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ABSTRACT 

In the northwest Gulf of Mexico, large energetic eddies spin off the intruding Loop Current and migrate westward along the 
continental slope region, causing sporadic exchanges of water between the nutrient rich shelf and the more oligotrophic deep basin.  
These exchanges enrich surface waters over the deep basin, enhancing the spawning grounds of Bluefin Tuna (Thunnus thynnus) and 
other important big game fish, but may be deleterious for retention of reef fish which spawn and settle as juveniles on the shelf.  
Many reef fish are broadcast spawners with eggs and larvae susceptible to entrainment in this large-scale, water exchange process.  
Subsequent dispersal over the deep basin reduces potential larval settlement success for species that have shallow water habitat 
requirements for post-larval stages, and ultimately may influence recruitment and population abundance.  In this study we examine 
the effect on egg/larval dispersal from the Flower Gardens National Marine Sanctuaries (FGNMS), located toward the outer shelf in 
an area commonly impacted by the spin-off eddies.  During the heavy spawning season (summer) between 2003 and 2014, eddy 
energy over the upper slope decreased substantially with concomitant egg/larvae retention on the continental shelf and weaker loss 
to the deep basin.  Although retention for settlement in favorable FGNMS habitat (i.e. larvae contributed by local spawners) was 
increased, ability to broadcast larvae over broad areas was decreased and larval dispersal from dense (western Gulf of Mexico) to 
depauperate (eastern Gulf of Mexico) red snapper populations was diminished. 
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INTRODUCTION 
The most dominant circulation features in the Gulf of Mexico (GOM) are the Loop Current (LC) and its large, energet-

ic spin-off eddies (Leipper 1970, Elliott 1982, Vukovich 2007). The LC is a limb of the western boundary current in the 
North Atlantic.  It intrudes northward into the GOM through the Yucatan Channel at core flow speeds in excess of 2 m/s 
before turning southward and exiting into the Straits of Florida. After a strong extension northward, the dynamically 
unstable LC at times turns back onto itself with the head breaking off into a spin-off eddy (Figure 1).  After detachment, this 
eddy migrates west under the influence of the earth’s rotation as it disintegrates, shedding smaller cyclonic and anticyclonic 
eddies around its periphery. If the westward migration path is at higher latitudes where it is bounded by the continental 
slope, interactions with shelf waters can occur (Ohlmann et al. 2001, Hanisko and Lyczkowski-Shultz 2003) with plankton-
ic larvae pulled from the shelf region where they normally settle, into deep basin waters, which is likely to result in lower 
settlement success. This in turn would lead to a reduction in recruitment to the population.  

The Flower Gardens National Marine Sanctuary (FGNMS; Figure 1) is composed of three ancient salt domes along the 
outer shelf where they are vulnerable to water exchanges with the deep basin. These domes consist of Stetson Bank, West 
Flower Gardens and East Flower Gardens. These banks rise to within ~17 m of the surface and support the northernmost 
living coral in the Gulf of Mexico as well as large aggregations of reef fish. Larval dispersal from the FGNMS has been 
previously examined and the large impact of LC eddies on dispersal has been noted (Lugo-Fernandez 1998; Ohlmann et al. 
2001, Hanisko and Lyczkowski-Shultz 2003, Teague et al. 2013). Furthermore, using satellite altimetry and larval surveys, 
Lindo-Atichati et al. (2012) observed a tendency for the LC to vary in its interannual penetration northward, which can 
affect the latitude of the westward eddy migration path and eddy interactions with the shelf on a multi-year scale. In 
addition, they found that higher abundances of pelagic larvae were associated with the LC and its mesoscale features, 
demonstrating the potential for larvae to be incorporated and retained in these features.   

In this study, we use currents from a data assimilative ocean model to track interannual larval dispersal from the 
FGNMS in relation to kinetic energy on the continental slope from the spin-off eddies.  Satellite altimetry data assimilation 
has been an important part of improvements in operational models (e.g., Kantha and Clayson 2000) which describe ocean 
events in near real-time; satellite altimetry data assimilation phase-locks model runs to real ocean events, such as spin-off 
eddies, in space and time. This is especially necessary in describing the LC since it is considered to be dynamically unstable 
(Hurlbert and Thompson 1980) and eddy spin-off is not readily amenable to predictive modeling where timing with respect 
to seasonal spawn is important.   

 
METHODS 

 
Lagrangian Larvae Tracking 

Archived currents from the HYbrid Coordinate Ocean Model (HYCOM; Bleck 2002) with 1/25o longitude/latitude grid 
spacing were used for both larval dispersal and eddy energy determination. HYCOM model runs from 2003 - 2014 provided 
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a decadal scale to investigate climate variations on the 
process of dispersal by offshore eddies.  Red snapper 
(Lutjanus campechanus) life history was used as a model 
for reef fish in the northern Gulf since they are abundant in 
the FGNMS and are of high economic value for GOM 
fisheries. Larvae are theoretically spawned in the model 
every six days from June through August (primary red 
snapper spawning season) and the associated parcels of 
water tracked for 30 days (red snapper planktonic larval 
duration: PLD).  At the end of the PLD, larvae are ready to 
settle.  If they are in water deeper than 400 m at this time, 
they are considered lost to the source area and to the 
general population even though a few could end in suitable 
habitat elsewhere in the Gulf (e.g., Hare et al. 2002, 
Johnson et al. 2012). 

The parcel tracking algorithm provides a means to 
account for sub-grid scale turbulence (Dutkiewicz et al. 
1993; Johnson et al. 2012).  For each spawn, 10 parcels 
were launched. Nine parcels were tracked using the 
HYCOM current but at each step a small random displace-
ment was added; one parcel was tracked without the 
turbulent addition. A number of different turbulence 
amplitudes and random displacement forms were tested 
with little difference on the observed parcel track. In 
consideration of these tests, we chose a simple form:  

 
δu = 0.1 * S * Pu 

 
where δu is a turbulent addition to the current component, 
S is the speed of the current and Pu is a standard normal 
random variable.  

The cumulative effect of active vertical migration on 
red snapper larval dispersal is unclear. At-sea studies of 
vertical migration (Huebert et al. 2011) indicated that 
ontogenic sinking to greater depth, i.e., gradually moving 
deeper with growth and development, may be more likely 
than daily vertical migrations for Lutjanidae such as red 
snapper. In addition, the Lutjanidae larvae appeared to be 
concentrated in the upper 25 m of the water column but 
were distributed throughout this layer. In this study, we 
model a simple case in which currents are averaged, and 
larvae are distributed uniformly over the upper 30 m of the 
water column.  

 
Eddy Energy 

It is well understood that eddies interact with the 
continental shelf across the upper continental slope and 
shelf break; the mechanism by which this complex 
interaction takes place can be mathematically described 
(Ohlmann et al. 2001).  In this study we simplified the 
problem by estimating the turbulent kinetic energy (TKE) 
available for interactions to occur.  This allowed a simple 
criteria to compare with larvae lost from natal areas and 
avoids the difficulty of trying to determine coincidental 
larval availability and eddy interaction placement.  
HYCOM currents averaged over the upper 30 m (same as 
in larva tracking) were separated into mean and fluctuating 
components: 

East component:  

North component:     

Figure 1. Thermal imagery of Loop Current with Spin-off eddy detaching.  The solid white lines show boundaries of 
area of interest.  Black dot shows FGNMS. 
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Where: 

                   
                           
 
TKE 
 
 
ρ is water density and ∆x∆y∆z is area.  
  

In practice, TKE is computed at each model grid point 
and both water density and area along with the factor of 2 
are dropped as non-varying components. To compare with 
larvae lost to the deep basin by eddy interactions, TKE is 
summed over all grid points lying between the meridional 
boundaries in Figure 1 and between the 400 m and 1000 m 
isobaths of the upper continental slope. Due to satellite 
orbital variations over strong along-track geoidal changes 
(continental slope) and to tidal amplitudes over the shelf, 
altimetry is only accepted as valid for data assimilation (Ko 
and Wang 2014) in depths exceeding 400 m. In tests, we 
found little difference in larvae loss with the commonly 
accepted shelf break of 200 m depth for larval loss to the 
deep basin, and the 400 m criteria for altimetry. We used 
the 400 m isobath for both. 

 It should be noted that larval dispersal is calculat-
ed over the primary red snapper spawning season from 
June-August. TKE is also computed over the same summer 
time frame. This is important in that it avoids substantial 
TKE that would otherwise be included as a result of change
-of-season wind stress and aids in focus on the large eddy 
contribution.   

 
Florida Current Transport 

The LC enters the GOM through the Yucatan Channel 
and exits through the Straits of Florida. By simple mass 
balance it is readily assumed that there is a long-term 
correspondence between the LC and the Florida Current 
(FC).  FC transport has been measured since 1982 (Larsen 

1992) by using the inductive voltage in a submarine cable 
running between Florida (Miami) and the Bahamas. In 
2003, the cable was moved, but good quality signals have 
since been obtained and the measurements considered 
valid (see Acknowledgements). Here we are using FC 
transport measurements as a means of identifying decadal 
variations in strength of LC transport. 

 
RESULTS 

 The highest offshore dispersal from the FGNMS 
occurred in 2003 (Figure 2). Dispersal offshore extended 
to the Campeche Banks in the south, to the southwest 
Florida shelf in the east and to the Texas/Mexico border (~ 
26oN) in the west. It should also be noted that dispersal of 
larvae shoreward to suitable habitat for juvenile red 
snapper (Gallaway et al 1999, Rooker et al. 2004, 
Gallaway et al 2011) was weak.   

Comparing the dispersal of 2003 with TKE available 
for interactions between the continental shelf and the deep 
basin suggests that TKE is a simple approach to predict the 
impact of LC eddies on recruitment and, consequently, to 
better understand fluctuations in abundance of red snapper 
populations. The largest TKE was located along the east 
side of Campeche Bank and the far southwestern Florida 
shelf where direct interactions with the loop current were 
taking place. TKE during the summer of 2003 (Figure 3 
left panel) was also high along the upper slope in the 
northwestern GOM where eddy interactions commonly 
take place.  This matches the high larval dispersal that was 
calculated from the model in 2003.  In contrast the TKE of 
2013 in the same area (Figure 3 right panel) was consider-
ably weaker, suggesting weak interaction with larvae from 
the FGNMS.   

Figure 4 summarizes the core findings of this study 
showing:  

i) Larvae dispersed in the model but ending their 
PLD in the deep basin,  

ii) TKE available over the upper continental slope, 
and  

iii) Current transport associated with strength of the 
LC.   

 
At each of the three spawning locations, 160 model 

larvae were launched over the three month spawning 
season for a total of 480 each year. The number lost to the 
deep basin as a percentage of 480 total launched is plotted 
for each year between 2003 and 2014. In 2003, the percent 
of larvae lost to the deep basin (> 400 m) exceeded 75%, a 
remarkable percentage of the total summer model spawn.  
After 2003, the trend was downward, with the lowest point 
reached in 2012 (~15% lost). TKE over the upper slope 
during the same time frame also showed a downward 
slope, with ~ 50% reduction in available energy between 
2003 and 2014. In the meantime, the FC transport was 
reduced by about 10%. This suggests that inflow in the 
GOM and  northward penetration of the LC (Bulgakov and 
Meulenert-Pena 2003, Alvera-Azcárate et al. 2009) was 
also reduced, resulting in spin-off eddies that took a more 
southern pathway toward the western boundary of the 
GOM, in decreased interactions with the shelf and in 
decreased larval dispersal offshore. 

Figure 2.  Larvae dispersal from FGNMS sites in 2003.  
Yellow dots are daily positions for the 30 day PLD.  Individ-
ual larva outside the 400 m isobath (shown) at the end of 
the PLD are considered lost. 
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DISCUSSION 
Using the HYCOM model currents, larvae were 

tracked from three FGNMS spawning areas in the north-
western GOM for an 11-year period. Although larval 
dispersal from the FGNMS has been studied and the effect 
of LC spin-off eddy interactions with shelf waters and its 
load of shelf spawned larvae has been duly noted, this 
study focused on the decadal scale variations in larvae loss 
to the deep basin resulting from these eddies. Life history 
of red snapper, with a primary summer spawning season 
and a PLD of 30 days, can be used as a surrogate for many 
reef fish. Loss to the deep basin was defined as the percent 
of larvae spawned at the FGNMS sites from June - August 
and ending the 30 day PLD in water depths greater than 

400 m. This LC spin-off eddy effect could be responsible 
for episodic reductions in recruitment with subsequent 
decrease in the abundance of these reef fish populations.   

In this study, we found a significant decadal scale 
downward trend in both dispersal and loss of red snapper 
larvae to the deep basin and in TKE related to spin-off 
eddy interactions with waters on the northern shelf.  
Although the trend favored retention of larvae in source 
habitats, dispersal to other suitable habitats in the GOM 
was diminished. Johnson et al. 2009 found that it was 
difficult for red snapper larvae in the high spawning areas 
of the western GOM to be transported in shelf currents to 
the more depauperate populated eastern GOM due to 
topographic features. This study indicated that, while it is 
possible for the big eddies to move larvae to the eastern 
GOM, the numbers are fairly low. 

TKE is defined using departure from the mean current.  
Since we are interested in the impact of large eddies on the 
shelf, elimination of seasonal wind transitions can be 
important. The GOM has been defined as having two 
seasons (Cho et al. 1998): summer and non-summer. Our 
choice of the summer season as the averaging time scale 
reflected not only the primary red snapper spawning 
season, but also eliminated strong spring and fall wind 
transitions and their contributions to TKE.  

Figure 3.  TKE between 400 m and 1000 m isobaths for 
2003 (left) and 2013 (right).   
 Blue:  0.025 m2/s2 ≤ TKE < 0.050 m2/s2 

 Red:   0.050 m2/s2 ≤ TKE < 0.075 m2/s2 

 Yellow:  0.075 m2/s2 ≤ TKE 

Figure 4.   Upper: Annual % of larvae lost from FGNMS 
(ended PLD > 400 m depth).  
 

Middle: Turbulent Kinetic Energy anomaly (Jun-Aug de-
parture) over the upper continental slope 
 
Lower: Annual Florida Current Transport from cable 
measurements. 
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Significant multidecadal changes in the GOM 
ecosystem have been noted (Karnauskas et al. 2015, 
Sanchez-Rubio 2011) and related to the Atlantic Multide-
cadal Oscillation (AMO) index, a measure of north Atlantic 
sea surface temperature.  The AMO was further related to 
the Atlantic Meridional Overturning Circulation (AMOC; 
Liu et al. 2012), a limb of the global ocean conveyor belt, 
and its effects on inflow into the GOM noted.  In this 
context, then, it is recognized that the AMO reached a 
broad peak in the time frame 1998 - 2010 and appears to be 
diminishing. Thus the decadal scale changes in larval 
dispersal to the deep basin and TKE over the continental 
slope as noted here, may be part of a multidecadal oscilla-
tion.  
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