# Long-term Residency of Benthic Fishes at an Artificial Patch Reef Using Hourly Ultra-short Videos 

# Videos Ultra Cortos, por Hora, para Establecer Residencia a Largo Plazo de Peces de Profundidad (Benticos) en un Área de Arrecife Artificial 

# Résidence à Long Terme des Poissons Benthiques dans un Petit Récif Artificiel en Utilisant des Vidéos Ultra-courts une Fois par Heure 

CHARLES A. BARANS*, MICHAEL D. ARENDT, and JEFFREY A. SCHWENTER<br>Marine Resources Division, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, South Carolina 29412 USA. *baranssc@bellsouth.net. ArendtM@dnr.sc.gov. SchwenterJ@dnr.sc.gov.


#### Abstract

Few artificial reefs (ARs) have received intensive, long-term study. In 1999, a small "patch" ( $\sim 177 \mathrm{~m}^{2}$ ) AR was created in an undisclosed location 72 km off the coast of Georgia, United States, in 26 m of water. Ten-sec videos $(77,593)$ were recorded hourly by up to six diurnally operated cameras viewing $\sim 360^{\circ}$. Through September 2008, 106 taxonomic identifications included 40 benthic resident species, 34 mid-water visitors, 12 benthic cryptic species, and 12 supra-benthic nomads. The six benthic "resident" fishes/groups (Haemulon aurolineatum, Rhomboplites aurorubens, Balistes capriscus, Chaetodipterus faber, Centropristis sp. and Mycteroperca sp .) exhibited unexpectedly low presence (range: 4-50\%). A Generalized Additive Model explained more deviation in residents' presence ( $26.4 \pm 2.4 \%$; mean $\pm$ SE) than a Generalized Linear Model ( $18.9 \pm 2.7 \%$ ), among 13 covariate terms across species. Year, the interaction between temperature and salinity and season each explained more variance than water temperature or salinity, suggesting that yearly and seasonal conditions may have contained multiple factors not among those measured. Significant inter-annual trends in presence between 2000 and 2008, were shown by C. faber (Atlantic spadefish) downward during the spring seasons and by $R$. aurorubens (vermilion snapper) upward during the summer seasons. Despite their low short-term presence and high variability, the frequency of observations of resident fishes of the patch reef remained relatively stable over eight years. This study reinforced the utility of fixed remote video for assessment of long- and short-term temporal trends.


KEY WORDS: Long-term residency; video monitoring; artificial patch reef

## INTRODUCTION

Although attraction of fishes, particularly adult life stages, to ARs shortly after reef deployment is well documented (Pickering and Whitmarsh 1997, Brickhill et al. 2005), few studies of species persistence over time in reef areas exist (Bohnsack and Sutherland 1985). Also, variation in density within habitat types is less well understood (Schobernd and Sedberry 2009). Despite high quality spatial coverage from submersible video such as that used by Schobernd and Sedberry (2009), single observations are inadequate for characterizing temporal changes in fish presence; such information can only be obtained through long-term monitoring repeatedly at the same sites.

Long-term variability in a species' residence may contribute significantly to shifts in the reef fish assemblage composition (Parker and Dixon 1998) as well as to fish assemblage succession at ARs (Bohnsack and Sutherland 1985). There is speculation that resident Centropristis striata may be displaced by increases in size and number of Mycteroperca sp . grouper over many years at a given site (Melvin Bell, South Carolina Marine Resources Division, personal communication). Also, since fisheries independent sampling to monitor changes in population relative abundance, are often multi-seasonal, variability in the seasonal presence of residents at a local habitat could, potentially, influence interpretation of sampling results. Short-term variability in fishes' seasonal and long-term residency and persistence should be of concern in the interpretation of estimates of relative abundance based upon one time/site sampling for comparisons of long-term species trends in abundance.

Catch rates, historically have been a data source of choice for defining characteristics of larger reef fishes, however they do not always reflect true species relative abundance (or absence) given gear selectivity and avoidance (Rose et al. 2005).Visual census methods provide a non-destructive sampling alternative and are less biased than catch rates (Clark and Edwards 1994, Harmelin-Vivien et al. 2008). Despite the proven efficacy, repetitive remote video sampling over extended observation periods has been conducted predominantly at nearshore reef habitats (Lowry et al. 2011, Malcolm et al. 2007, Pelletier et al. 2012, Watson et al. 2005, 2007). Long-term monitoring projects, spanning several years of observation, are also not widely reported for ARs or natural reef habitats (Jan et al. 2007, Mills et al. 2005, Smith and Tyler 1973). One notable exception is a long-term research program at an experimental AR system in the northeast Gulf of Mexico (Lindberg et al. 2006) that has included underwater video (Mason et al. 2006).

We describe the long-term patterns of variance in frequency of presence/absence (residency) by season and the relative importance of water temperature and salinity on frequency of presence of six benthic resident species/groups at a patch AR (objectives $1 \& 2$ ). We also report inter-annual trends in frequency of presence by season for benthic resident species between 2000 and 2008 (objective 3).

[^0]
## METHODS

In May 1999, a research site was initiated on the midcontinental shelf 72 km off the coast of Georgia ( $32^{\circ} \mathrm{N}$ ), United States, within a hydrographically-dynamic region at a water depth of about 26 m . The research site consisted of six clusters of two concrete Fish Haven ${ }^{\text {TM }}$ pyramids (Artificial Reefs, Inc.; Pensacola, Florida) that measured 2.5 m (base width) $\times 1.5 \mathrm{~m}$ (height) arranged in a circle ( $\sim 15 \mathrm{~m}$ diameter) around a centrally located remote underwater video system (Barans et al. 2005). This arrangement created a habitat footprint of $\sim 81 \mathrm{~m}^{2}$ (13 pyramids) that encompassed $46 \%$ of the circular area $\left(176.6 \mathrm{~m}^{2}\right)$. The research site was situated on an otherwise sandy bottom widely separating the low relief, sporadic "live bottom" sponge/coral or "hard-bottom" habitats that typify the continental shelf (Struhsaker 1969). To reduce the probability of fishing, the location of the patch AR was not disclosed to the public; however, by winter 2006 the patch AR had been discovered by a local spear fisher, who only occasionally removed C. striata; thus, we considered this site to have remained relatively un-fished.

Fisheries video data collection began on 27 August 1999. Six black and white security cameras (Supercircuits PC-23C) with wide-angle lenses ( $8 \mathrm{~mm}, 12^{\circ}$ angle of view), low light capabilities ( $<0.04$ lux), and relatively low resolution ( 460 lines) collected short ( $\leq 10 \mathrm{~s}$ ) video data files each hour during daylight. Sampling frequency and duration represented a compromise. Previous experience demonstrated that fish identifications to species level were greatly facilitated by changes in fish aspect to the camera, usually occurring during 10 s but not in single still images. Limited band width available for transmissions from the U.S Navy required use of short video data sets, but allowed replication by six cameras and hourly sampling. Video data files were transmitted via a single coaxial cable from the cameras to a capture computer located in a Navy communication tower (Seim 2003) 0.8 km away, and then to shore via microwave.

Trained personnel recorded qualitative scores estimating the depth of field in each video data file. Only video data files collected under "good" (within and beyond the AR units) and "fair" (full extent of the closest units) visibility were analyzed. Similarly, only video data files with $<50 \%$ biogenic fouling on the camera windows were analyzed. Less than $10 \%$ of video data files from periods of acceptable visibility were excluded due to fouling, except for April through June 2004 and January through March 2007 when $87 \%$ ( 1390 out of 1593 ) and $29 \%$ ( 297 out of 1014) of videos, respectively, were excluded. High seas and vessel breakdowns often delayed routine maintenance. All organisms observed in each video data file were identified to the lowest taxonomic level, and the degree of reviewer identification confidence $(1=$ positive, $2=$ confident, $3=$ uncertain) was also included. Relative abundance scores for each taxon were assigned as follows: $1=<5,2=5$ to 20 , and $3=>20$ individuals.

Statistical analysis of long-term temporal change in frequency of occurrence was conducted for six benthic resident species/groups common to the study region (Chester et al. 1984, Parker et al. 1994), seen in multiple years, and hence, presumed to be resident (Powers et al. 2003) without knowledge of any variations in species' presence. These species/groups included Haemulon aurolineatum, Rhomboplites aurorubens, Balistes capriscus, Chaetodipterus faber, sea basses (Centropristis sp.), and groupers (Mycteroperca sp.).
Time of day increments were defined as:
i) < 10:00 local standard time (LST),
ii) 10:00-13:00 LST,
iii) 13:00-16:00 LST, and
iv) $>16: 00$ LST.

Annual data were partitioned by year and season, where the latter was defined as Jan - Mar (1), Apr - Jun (2), Jul - Sep (3), and Oct - Dec (4). Replicate video data files for cameras 1 to 6 were pooled by each of the four time of day increments for each day (often representing $>18$ video data sets). Species were considered present if seen in any of the videos. By pooling data, multiple sightings of the same fish or of a species were reduced to one value of presence or absence and maximized the probability of seeing any species present during that part of the day providing the most conservative indication of occurrence. Data were compartmentalized into seasons to capture the unique differences in multiple factors among seasons. Seasons with fewer than 25 observation periods, either due to insufficient numbers of video data files and/or incomplete environmental data, were excluded from analyses. Environmental data for each observation period consisted of mean bottom water temperature $\left({ }^{\circ} \mathrm{C}\right)$ and salinity (Practical Salinity Units, PSU), which were computed from six minute observations recorded $<1 \mathrm{~km}$ away by data loggers (Seim 2003).

Temporal, environmental and experimental conditions were investigated as possible predictors of species/group occurrence at the patch AR. Presence and absence data (the response term) for each species were analyzed in the software program "R" (Version 2.13.0; R Core Team, Vienna, Austria) with both a generalized linear model (GLM, via the MASS package), and a generalized additive model (GAM, via the $m g c v$ package). Species presence/ absence was fit to a binomial distribution using the "logit" link function (default R link function for binomial distribution) and examined for relationships with the potential predicator variables year, season, time of day bin, camera, mean water temperature, and mean salinity. Mean water temperature and salinity during each three-hour observation period were entered into the model as smoothed terms using splines checked by varying effective degrees of freedom for the smoother function (to examine the complexity of smoother fits). Year also entered the model as a continuous, smoothed term, while the model terms
season, time of day, and camera were analyzed as factors. Magnitude changes were associated with temporal progression for season (cyclical) and time of day (cyclical); however, we analyzed these terms as factors instead of as quantitative variables given the small range and fixed increment changes in magnitude for both. The null model contained four interaction terms (identified by Pearson's r $>0.3$ ): year x season; water temperature x season; salinity $x$ year; and salinity $x$ water temperature.

The optimal analytical method was chosen after comparing the lowest Akaike's Information Criterion (AIC) score and the residual deviance of the "best-fit" GLM and GAM models. Final model selection was accomplished through a backward stepwise regression based on comparison of the lowest AIC terms and unbiased risk estimator (UBRE) scores between competing models and using additional standard methods, including plotting quantile residuals (Dunn and Smyth 1996).

Linear regression was performed in Minitab $15^{\circledR}$ to assess relationships between null model AIC scores and overall frequency of observation, overall frequency of observation and explained model deviance, and interannual trends by mean frequency of observation by season (for each of the 4 seasons, 6 species/groups). Chi-squared contingency tests and linear regressions were performed in Minitab $15^{\circledR}$ to test for proportionate differences and linear inter-annual trends, respectively, for observation or observation period distributions for selected model terms.

Long-term trends were evaluated for six benthic resident species/groups during 7,515 observation periods (Table 1); each period represented up to 6 camera videos/ hr. pooled to four times (samples)/day, which spanned 802 observation days between 4 January 2000 and 30 September 2008. Sixty-five percent $(4,917$ out of 7,515$)$ of observation periods occurred in the final two years of this study, and $69 \%(5,214$ out of 7,515$)$ of observation periods occurred between April and September. Inter-annual trends in resident species/groups presence were evaluated on a season-specific basis, to reduce any effects of seasonal presence on annual presence. The number of seasons for which samples were available was often less than four.

Table 1. Numbers of the 7,515 observation periods (pooled data from $\leq 6$ cameras for $3-4$ hours) used to evaluate temporal trends in six resident reef fish species at a small, patch AR on the middle continental shelf off Georgia between 4 January 2000 and 30 September 2008.

| Year | Jan-Mar | Apr-Jun | Jul-Sep | Oct-Dec | Total |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 2000 | 74 | 243 | 58 | 35 | 410 |
| 2002 | --- | --- | -- | 676 | 676 |
| 2004 | 36 | 82 | 118 | 709 | 945 |
| 2005 | 139 | 251 | 102 | --- | 492 |
| 2006 | --- | --- | 29 | 46 | 75 |
| 2007 | 250 | 835 | 1,538 | --- | 2,623 |
| 2008 | 336 | 832 | 1,126 | --- | 2,294 |
| Total | 835 | 2,243 | 2,971 | 1,466 | 7,515 |

RESULTS
Between 27 August 1999 and 30 September 2008, a total of 77,593 video data files were collected. Thirty-three percent $(25,482)$ of all video data files collected were deemed suitable for analysis based on underwater visibility and depth of field. Among video data files analyzed, 44,487 observations comprising 106 species designations were recorded (Supplement 1). Benthic residents (40) were most numerous, followed by mid-water visitors (34), benthic cryptic species (16), supra-benthic nomads (12), commensal species (3), as defined by Smith and Tyler (1973) and one avian species.

All six benthic resident species/groups were observed year-round. Seventy-three percent of Centropristis sp. observations ( 755 out of 1,036 ) were further identified to C. striata. Among grouper observations, $52 \%$ ( 855 out of 1,646 ) were identified to $M$. microlepis and $6 \%$ ( 107 out of $1,646)$ were identified to M. phenax. B. capriscus, Centropristis sp., and Mycteroperca sp. occurred almost exclusively ( $\geq 88 \%$ ) in groups of fewer than five individuals, thus favoring presence-absence analysis. Relative abundances for C. faber, H. aurolineatum, and R. aurorubens were more variable, but were predominantly ( $\geq 45 \%$ ) associated with one relative abundance score (i.e., $<5,5$ to 20 , or $>20$ individuals).

Resident species were observed at the patch reef much less frequently than expected and their presence was highly variable. Overall frequency of observation ranged from $4 \%$ (308 out of 7,515 periods) for B. capriscus to $50 \%$ ( 3,721 out of 7,515 periods) for H. aurolineatum (Table 2). Null model AIC scores (representing our method of choosing the best analytical model) ranged from 2,573.6 ( $B$. capriscus) to $10,427.5$ ( $H$. aurolineatum), and increased significantly with greater frequency of observation $\left(\mathrm{F}_{5}=\right.$ 21.85; $p=0.009 ; r^{2}=0.81$ ). The amount of deviation explained, however, was not related to frequency of observation for the GLM ( $\mathrm{F}_{5}=0.60 ; p=0.482 ; \mathrm{r}^{2}=0.00$ ) or the GAM ( $\mathrm{F}_{5}=0.23 ; p=0.653 ; \mathrm{r}^{2}=0.00$ ). Mean explained deviance was $26.4 \pm 2.4 \%$ (mean $\pm$ SE) for the GAM and $18.9 \pm 2.7 \%$ for the GLM. For all six species/ groups, the GAM always explained more deviance than the GLM (Table 2).

Among resident species/groups, the greatest amount of variation in observation frequency (presence) was explained by annual differences, although the deviation explained was low (mean $\pm \mathrm{SE}=7.3 \pm 2.0 \%$ ). Considerable variability was noted in the relative importance of model parameters among species, as evidenced by large SE relative to mean values (Table 3). All model parameters were retained as significant terms for at least one species, and parameters were only retained as non-significant terms in eight instances. The interaction between water temperature and salinity explained the second greatest amount of deviance ( $7.0 \pm 1.5 \%$ ), largely as a result of observations of H. aurolineatum and $R$. aurorubens (Table 3). Individually, neither salinity $(0.7 \pm 0.2 \%)$ nor water temperature ( $0.2 \pm$

Table 2. Percent observation (pct. present) is given for the overall data set ( 7,515 observation periods) and among seasonal blocks with 835 to 2,971 observation periods each. Underlined values are highest seasonal presence. The generalized additive model (GAM) was selected over the generalized linear model (GLM) for analyzing model parameter influences and temporal observation tends for six resident reef fish species/groups at the small, patch AR, based on lower Akaike's Information Criterion (AIC) scores and a greater percent of model deviance explained.

| Overall | B. capriscus | C. faber | $R$. aurorubens | H. aurolineatum | Centropristis sp. | Mycteroperca sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Periods present | 308 | 1447 | 1475 | 3721 | 861 | 1376 |
| Pct. Pres. overall | 4 | 19 | 20 | 50 | 11 | 18 |
| Pct. Pres. Jan to Mar | 3 | 49 | 3 | 47 | 22 | 20 |
| Pct. Pres. Apr to Jun | 5 | 25 | 6 | 41 | 11 | 16 |
| Pct. Pres. Jul to Sep | 1 | 14 | 39 | 71 | 3 | 18 |
| Pct. Pres. Oct to Dec | $\underline{9}$ | 4 | 11 | 21 | $\underline{\underline{24}}$ | $\underline{2}$ |
| GLM |  |  |  |  |  |  |
| AIC null | 2573.6 | 7367.7 | 7447.4 | 10427.5 | 5353.6 | 7159.6 |
| AIC final | 2109.5 | 6033.3 | 5849.7 | 7800.0 | 4272.7 | 6769.8 |
| Deviance null | 2571.6 | 7365.7 | 7445.4 | 10425.5 | 5351.6 | 7157.6 |
| Deviance final | 2063.5 | 5987.3 | 5803.7 | 7754.0 | 4226.7 | 6723.8 |
| Deviance Explained | 19.8 | 18.7 | 22.1 | 25.6 | 21.0 | 6.1 |
| GAM |  |  |  |  |  |  |
| AIC null | 2573.6 | 7367.7 | 7447.4 | 10427.5 | 5353.6 | 7159.6 |
| AIC final | 1960.0 | 5883.5 | 5185.7 | 7293.7 | 3821.7 | 6061.1 |
| Deviance null | 2571.6 | 7365.7 | 7445.4 | 10425.5 | 5351.6 | 7157.6 |
| Deviance final | 1874.5 | 5770.5 | 5084.4 | 7193.6 | 3730.9 | 5953.8 |
| Deviance Explained | 27.1 | 21.7 | 31.7 | 31.0 | 30.3 | 16.8 |

Table 3. The percent of deviance (relative influence) explained by 13 model terms on the frequency of observations among six benthic resident species/groups at the patch AR. Generalized Additive Model terms: Factor (F); Smooth (S). Term of greatest influence on each spp. underlined.

$0.2 \%$ ) explained much deviance. Mean ( $\mathrm{SE}<0.1^{\circ} \mathrm{C}$ ) seasonal water temperatures ranged from $16.4^{\circ} \mathrm{C}$ between January and March to $26.2^{\circ} \mathrm{C}$ between July and September; mean ( $\pm \mathrm{SE}$ ) water temperatures were similar during April to June $\left(22.2 \pm 2.7^{\circ} \mathrm{C}\right)$ and October to December $(21.2 \pm$ $2.7^{\circ} \mathrm{C}$ ). Mean salinity throughout the study was 35.6 PSU ( $\mathrm{SE}<0.1 \mathrm{PSU}$ ), but varied from a low of 32.7 PSU (October to December 2002) to a high of 36.3 PSU (October to December 2006).

Although camera number, time of day, season, and the interaction between season and year (Table 3) each explained a small amount of the variation in the frequency of observation of each resident species/group, the mean deviance was not statistically different $\left(\mathrm{H}_{3}=1.03, p=\right.$ 0.795 ) among these model parameters. The greatest deviance explained by camera number ( $2.9 \pm 1.3 \%$ ) was for

Centropristis sp. (Table 3), for which 47\% (408 out of 861) of observations were associated with camera 5. All observation periods analyzed in 2000 were associated with camera 5, while the proportion of observation periods associated with camera 5 in the remaining years ranged from $8 \%$ (2005) to $30 \%$ (2004). For H. aurolineatum time of day of observations ( $2.5 \pm 0.6 \%$ ) explained the greatest amount of deviation (Table 3); they were seen significantly less often ( $\chi^{2}=87.6, p<0.001$ ) prior to 10:00 LST ( $40 \%$; 656 out of 1,628 observation periods) compared to other time of day blocks (48-54\%; 1,838-2,096 observation periods). Significant seasonal variability in observation was detected $\left(\chi^{2}=1,141, p<0.001\right)$ for $R$. aurorubens which contributed to the deviations in observed frequencies for season $(1.7 \pm 0.6 \%)$ and the interaction between year and season $(1.7 \pm 0.6 \%)$. Between July and September, $R$.
aurorubens was observed in $39 \%(1,145$ out of 2,971$)$ of observation periods, compared to just $3-11 \%$ (835-2,243 observation periods) of other seasonal blocks. Annually, the proportion of data collected between July and September ranged from $12 \%$ ( 118 out of 945 observation periods) in 2004 to $59 \%$ ( 1,538 out of 2,623 observation periods) in 2007; however, a significant linear trend among observation frequencies was not detected $\left(\mathrm{F}_{5}=7.31, p=0.054, \mathrm{r}^{2}=\right.$ $0.56)$.

All six benthic resident species/groups were observed to be present during all seasons; however, with the exception of Mycteroperca sp . frequencies of observation among seasons within a given year and within a season among years were highly variable (Table 4). The mean probability of observation for the four seasons ranged from $<0.1$ (all six species/groups) to $0.758( \pm 0.002 \mathrm{SE})$ for $H$. aurolineatum in July to September 2007.

The residents exhibited varying trends in the frequency of observations across years. Between 2004 and 2008, B. capriscus and Centropristis sp. decreased in frequency of observation, while $H$. aurolineatum increased, but none significantly. Both C. faber. and $R$. aurorubens demonstrated significant inter-annual trends in observed frequencies during spring (decrease) and summer (increase) seasons, respectively (Table 5). Between springs (April and June) the observation probability for C. faber systematically declined from a peak of 0.484 in 2000 to a low of
0.153 in $2008\left(\mathrm{~F}_{4}=43.71 ; p=0.007 ; \mathrm{r}^{2}=0.91\right.$. During the summers (July through September) the frequency of observation of $R$. aurorubens increased from 0.002 in 2000 to 0.326 in $2008\left(\mathrm{~F}_{4}=8.67 ; p=0.032 ; \mathrm{r}^{2}=0.56\right)$.

## DISCUSSION

Infrequent observation of benthic "resident" species/ groups (range in presence: $4-50 \%$ ) in this study was surprising given routine observation of these species in other studies conducted in the general study region (Parker et al. 1994, Sedberry and Van Dolah 1984). Yet, the term "resident" is justified by the fact that all six species/groups persisted at the site throughout the eight year study. Habitat size of the patch AR (ie. invertebrate carrying capacity) or structure size/shape may have limited the short-term persistence of some species. Our frequency of observations may have been reduced for species/groups such as Mycteroperca sp . that prefer habitats of high vertical relief (Burge et al. 2012, Kendall et al. 2008). Also, most previous studies utilized spatial, continuous sampling transects, whereas the present study conducted repetitive temporal sampling at a stationary location. The short video durations in the present study should not have negatively influenced our findings because Barans et al. (2005) reported observation of at least one animal species in > $77 \%$ of a 28 month sub-set of the video data files examined here.

Table 4. Mean seasonal observation frequency (presence) of six benthic residence species/groups at a small, patch AR in the middle continental shelf off the coast of Georgia, United States between years 2000-2008. Highest seasonal presence (2000; 2004; 2007) are bold font.

| Species | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centropristis sp. |  |  |  |  |  |  |  |  |  |
| Summer | 0.169 |  | 0.089 |  | 0.370 | 0.042 | 0.055 | 0.012 | 0.009 |
| Fall | 0.215 |  | 0.236 |  | 0.248 |  | 0.115 | 0.001 |  |
| Winter | 0.378 |  |  |  | 0.434 | 0.394 |  | 0.157 | 0.138 |
| Spring | 0.258 |  |  |  | 0.682 | 0.137 |  | 0.055 | 0.051 |
| Mycteroperca sp. |  |  |  |  |  |  |  |  |  |
| Summer | 0.000 |  | 0.015 |  | 0.066 | 0.161 | 0.297 | 0.293 | 0.038 |
| Fall | 0.040 |  | 0.255 |  | 0.192 |  | 0.283 | 0.003 |  |
| Winter | 0.027 |  |  |  | 0.229 | 0.462 |  | 0.329 | 0.043 |
| Spring | 0.003 |  |  |  | 0.090 | 0.265 |  | 0.287 | 0.051 |
| C. faber |  |  |  |  |  |  |  |  |  |
| Summer | 0.236 |  | 0.154 |  | 0.147 | 0.074 | 0.258 | 0.145 | 0.142 |
| Fall | 0.019 |  | 0.020 |  | 0.043 |  | 0.242 | 0.000 |  |
| Winter | 0.498 |  |  |  | 0.519 | 0.585 |  | 0.493 | 0.440 |
| Spring | 0.484 |  |  |  | 0.371 | 0.352 |  | 0.228 | 0.153 |
| H. aurolineatum |  |  |  |  |  |  |  |  |  |
| Summer | 0.564 |  | 0.289 |  | 0.105 | 0.345 | 0.544 | 0.758 | 0.753 |
| Fall | 0.377 |  | 0.218 |  | 0.177 |  | 0.352 | 0.229 |  |
| Winter | 0.137 |  |  |  | 0.022 | 0.059 |  | 0.515 | 0.723 |
| Spring | 0.080 |  |  |  | 0.024 | 0.026 |  | 0.332 | 0.735 |
| $R$. aurorubens |  |  |  |  |  |  |  |  |  |
| Summer | 0.002 |  | 0.019 |  | 0.018 | 0.108 | 0.145 | 0.494 | 0.326 |
| Fall | 0.016 |  | 0.142 |  | 0.067 |  | 0.478 | 0.000 |  |
| Winter | 0.000 |  |  |  | 0.002 | 0.005 |  | 0.046 | 0.035 |
| Spring | 0.140 |  |  |  | 0.016 | 0.032 |  | 0.078 | 0.038 |
| B. capriscus |  |  |  |  |  |  |  |  |  |
| Summer | 0.040 |  | 0.025 |  | 0.159 | 0.040 | 0.012 | 0.003 | 0.006 |
| Fall | 0.109 |  | 0.078 |  | 0.107 |  | 0.010 | 0.001 |  |
| Winter | 0.099 |  |  |  | 0.215 | 0.075 |  | 0.005 | 0.006 |
| Spring | 0.189 |  |  |  | 0.357 | 0.093 |  | 0.005 | 0.008 |

Table 5. Statistical results from 24 linear regressions of mean seasonal model fits (frequency of presence) for each of the six benthic resident fish species/groups at the patch AR between the years 2000-2008. An * denoted a significant linear trend; degrees of freedom ranged from 3 (Oct - Dec) to 5 (Jul - Sep).

| Season | Species/Group |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan-Mar | B. capriscus | Centropristis sp. | C.faber | H. aurolineatum | Mycteroperca sp. | R. aurorubens |
| F-stat | 1.36 | 3.61 | 0.30 | 3.19 | 0.24 | 5.06 |
| p -value | 0.328 | 0.154 | 0.620 | 0.172 | 0.655 | 0.110 |
| $\mathrm{r}^{2}$ | 0.083 | 0.395 | 0.000 | 0.354 | 0.000 | 0.504 |
| Apr-Jun |  |  |  |  |  |  |
| F-stat | 1.86 | 0.76 | 43.71 | 3.00 | 0.87 | 1.87 |
| p -value | 0.266 | 0.488 | 0.007* | 0.182 | 0.421 | 0.264 |
| $\mathrm{r}^{2}$ | 0.177 | 0.000 | 0.914 | 0.333 | 0.000 | 0.179 |
| Jul-Sep |  |  |  |  |  |  |
| F-stat | 0.50 | 1.55 | 0.51 | 1.47 | 2.57 | 8.67 |
| p -value | 0.511 | 0.268 | 0.506 | 0.280 | 0.170 | 0.032* |
| $\mathrm{r}^{2}$ | 0.000 | 0.085 | 0.000 | 0.072 | 0.207 | 0.561 |
| Oct-Dec |  |  |  |  |  |  |
| F-stat | 7.71 | 4.70 | 0.49 | 0.25 | 0.01 | 0.38 |
| p -value | 0.069 | 0.119 | 0.533 | 0.649 | 0.947 | 0.583 |
| $\mathrm{r}^{2}$ | 0.627 | 0.481 | 0.000 | 0.000 | 0.000 | 0.000 |

Both season and year contributed to the variance in presence of the six resident species/group at the patch AR , but the environmental components that we measured, considered "key factors" (i.e., temperature and salinity) in presence or movements of other species, were much less important than a seasonal component. Clearly, important factors were not quantified for inclusion into the models, although similar results were found previously with Principal Components Analyses which included 11environmental factors. Unmeasured factors could have included behaviors modulated by internal clocks responding to combinations of seasonal factors, each representing only a small part of the seasonal environmental change when taken independently.

Species responses to dynamic environmental cues other than temperature or salinity may explain the low (but variable) observed presence of resident species at the patch AR. Although water temperature changes considerably on an annual basis, temperature variability in the analyzed data was reduced due to a preponderance of data originating in spring and fall at similar temperatures. Salinity variability was also negligible due to the mid-shelf study location. Sanders et al. (1985) found that the abundance of H. aurolineatum and B. capriscus was significantly related to water temperature at two ARs in the northeastern Gulf of Mexico. They suggested that spring recruitment may have contributed greatly to the relationship, especially for $H$. aurolineatum; however, none of the factors that they tested explained "much of the total variation" (in abundance).

Decreases in observed frequencies over time may have reflected a regional decline in relative abundance of the same species. The catch-per-unit-effort (CPUE) index of $C$. striata at the nearby Gray's Reef National Marine Sanctuary (GRNMS) decreased appreciably between 2006 and 2007 (David Wyanski, South Carolina Marine Resources Division (SCMRD), personal communication), while a standardized CPUE index declined from 2004 through

2009 throughout the region (Joseph Ballenger, SCMRD, personal communication). However, the same data set also indicated a decrease for $H$. aurolineatum, and $R$. aurorubens, during the same period when increased observation frequency was found at the patch AR in the present study. Absence of C. striata and B. capriscus could have reflected the limited sessile invertebrate populations available as forage for either species. Both C. striata (Sedberry 1988, Steimle and Figley 1996) and B. capriscus (Kurz 1995, Vose and Nelson 1994) forage extensively on AR epifauna, or on benthic infauna adjacent to reefs.

The decline in presence of C. striata after 2006 may have occurred due to fishing pressure. Declines in $B$. capriscus and Centropristis sp. in all seasons after 2006 coincided with discovery of the AR by an offshore spear fisher, who occasionally harvested "many very large" $C$. striata (but never Mycteroperca sp.) from the small patch AR. Simulated harvest fishing at a similar, but much larger, AR off South Carolina resulted in a significant decrease in the abundance of targeted species (B. capriscus, C. striata, M. microlepis and M. phenax combined) (Kolmos 2007). Fishing pressure can decrease the mean size of local target species as well as local abundances. M. microlepis and $M$. phenax were smaller in areas of intensive fishing than in areas of low fishing effort within similar habitats (Kendall et al. 2008).

Competition between Centropristis sp. and Mycteroperca sp . groupers for shelter at the small AR may have contributed to their somewhat opposite trends in relative abundance between 2005-2008, despite differences in habitat preferences between the two groups (Kendall et al. 2008). Observations of Mycteroperca sp. increased notably after 2006. Although little is known of inter-specific competition for space among the fishes within a temperate reef assemblage, Lindberg et al. (2006) demonstrated that intra-specific densities of M. microlepis are dependent on habitat size and shelter and that their growth and condition
are influenced by their densities, The decline in Centropristis sp. (2005-2008) from removal by fishing may have reduced competition for limited AR shelter space, thereby allowing M. microlepis to increase in abundance. Potential competition for space could have been compounded by simultaneous competition for food resources. Both $C$. striata and the Mycteroperca groupers access the same schools of forage species when prey species are forced to near bottom by large pelagic predators (Auster et al. 2009). Alternatively, increased presence of Mycteroperca sp. at the AR (2005-2007) may have influenced an exodus of Centropristis sp. (2005-2008), which are generally a smaller grouper, as well as B. capriscus as part of a natural assemblage succession effect (Thanner et al. 2006). Kendall et al. (2008) found that C. striata were present in a lower abundance where the Mycteroperca groupers were present at natural reefs within the same general area as the patch AR.

The presence of $C$. faber decreased each year of the study showing a significant inter-annual trend. Also, $C$. faber decreased linearly among seasons. Because the most important model term for C. faber was the interaction between temperature and salinity, the significant decline in presence of C. faber that occurred between April and June in later years may have resulted from their movement inshore in response to seasonal hydrographic conditions. Hayse (1990) suggested that C. faber collected from nearshore $(<20 \mathrm{~m})$ waters in summer aggregate further offshore ( $28-56 \mathrm{~m}$ ) in the winter.

In contrast, $R$. aurorubens increased significantly in presence during the eight year study. Also, a pronounced seasonal variation in observation of $R$. aurorubens, which was four times that of other species, was consistent with findings from trawl surveys at natural reefs in the same general area (Sedberry and Van Dolah 1984) and that $R$. aurorubens were not observed at temperatures below $16^{\circ} \mathrm{C}$ (Parker 1990). Seasonal differences in observation frequency among and within species may have reflected large scale species movements.

Variation in the presence of resident species suggests that fisheries managers should exercise caution when interpreting trends in catch rates spanning short sampling durations, since most resident species at the patch AR demonstrated significant inter-annual differences without significant inter-annual trends in presence during eight years. McGovern et al. (1998) found a non-linear pattern of catch rates of demersal reef species during a thirteen year period associated with intense fishing pressure. Unexplained deviance in fisheries data is often considered "random", although the effects of stochastic events have been reported (see review by Charles 1998). Despite the fact that most of the deviance in our long-term data could not be fully explained by standard environmental model terms, future studies could further explain the variable presence of reef fishes by long-term monitoring with a combination of fixed video and additional environmental sensors (i.e., pressure, current, etc.).

We feel that the use of fixed video systems should be expanded to address long- and short-term questions on reef fish assemblages (Burge et al. 2012), and where observations are validated, for collecting stand alone relative abundance data (Watson et al. 2005). The intense replication of diel observations ( 802 days during eight years) enabled confident examination of within and among season comparisons, despite the offshore challenges of transmission, fragile electronics, poor visibility and fouling. More frequent visits to research sites by scientific divers would reduce the extensive data loss due to fouling of camera windows and storm damage, as occurred in this study, while multiple video sites would allow assessment of foraging capacity at research and appropriate control sites (Brickhill et al. 2005). Video data loggers (Lowry et al. 2011) might be used to reduce discovery of any future study location by fishers during camera servicing to only those essential maintenance periods. In addition to fixed video, acoustic telemetry receivers could be deployed to continuously monitor a subsample of tagged fish (Arendt et al. 2001) to differentiate between visual and true absence from a study location.

## ACKNOWLEDGMENTS

This study was initiated through the South Atlantic Bight Synoptic Offshore Observational Network, with continued support through the Southeast Atlantic Coastal Ocean Observing System. Funding was provided by Office of Naval Research award \#N00014-02-1-0972 (through UNC Chapel Hill) and South Carolina State Recreational Fisheries Advisory Committee award \#23800-89321. We thank H. Seim (UNC) and G. Sedberry (GNRMS) for programmatic support. D. Schmidt (formerly SCDNR) designed and constructed the camera and computer systems used in this study. We thank J. Johnson, S. Pate, S. Czwartacki, D. Burgess, and R. Hiott (SCDNR) for contributions to the video data files. T. Moore (SKIO), T. McKissick (SKIO), and T. Snoots (SCDNR) provided crucial communications support. Field support was provided by numerous divers from NOAA's Undersea Research Center at UNC Wilmington, the U.S. Navy EOD Mobile Unit, Grays Reef National Marine Sanctuary, and the SCDNR. We would like to remember those that lost their lives while servicing the microwave tower. This is contribution No. 711 of the South Carolina Department of Natural Resources, Marine Resources Division.

## LITERATURE CITED

Arendt, M.D., J.A. Lucy, and T.A. Munroe. 2001. Seasonal occurrence and site utilization patterns of adult tautog, Tautoga onitis (Labridae) at manmade and natural structures in lower Chesapeake Bay. Fishery Bulletin 99(4):519-527.
Auster, P.J., J. Godfrey, A. Watson, A. Paquette, and G. McFall. 2009. Behavior of prey links midwater and demersal piscivorous reef fishes. Neotropical Ichthyology 7(1):109-112.
Barans, C.A., M.D. Arendt, T. Moore, and D. Schmidt. 2005. Remote video revisited: a visual technique for conducting long-term monitoring of reef fishes on the continental shelf. Marine Technology Society Journal 39(2):110-118.
Bohnsack, J.A., and D.L. Sutherland. 1985. Artificial reef research: A review with recommendations for future priorities. Bulletin of Marine Science 37(1):11-39.
Brickhill, M.J., S.Y. Lee, and R.M. Connolly. 2005. Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. Journal of Fish Biology 67(sB):53-71.

Burge, E.J., J.D. Atack, C. Andrews, B.M. Binder, M. Benjamin, Z.D. Hart, A.C. Wood, L.E. Bohrer, and K. Jagannathan. 2012. Underwater video monitoring of groupers and the associated hardbottom reef fish assemblage of North Carolina. Bulletin of Marine Science 88(1):15-38.
Charles, A.T. 1998. Living with uncertainty in fisheries: analytical methods, management priorities and the Canadian groundfishery experience. Fisheries Research 37(1998):37-50.
Chester, A.J., G.R. Huntsman, P.A. Tester, and C.S. Manooch, III. 1984. South Atlantic Bight reef fish communities as represented in hook-and-line catches. Bulletin of Marine Science 34(2):267-279.
Clark, S, and A.J. Edwards. 1994. Use of artificial reef structures to rehabilitate reef flats degraded by coral mining in the Maldives. Bulletin of Marine Science 55(2-3):724-744.
Dunn, P.K., and G.K. Smyth. 1996. Randomized quantile residuals. Journal of Computational and Graphical Statistics 5(3):236-244.
Harmelin-Vivien, M., L. Le Diréach, J. Bayle-Sempere, E. Charbonnel, J.A. García-Charton, D. Ody, A. Pérex-Ruzafa, O. Reñones, P. Sánchez-Jerez, and C. Valle. 2008. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: Evidence of fish spillover? Biological Conservation 141(7):1829-1839.
Hayse, J.W. 1990. Feeding habits, age, growth, and reproduction of Atlantic spadefish Chaetodipterus faber (Pisces: Ephippidae) in South Carolina. Fishery Bulletin 88(1):67-83.
Jan, R.Q., Y.T. Shao, F.P. Lin, Y.T. Fan, Y.Y. Tu, H.S. Tsai, and K.T. Shao. 2007. An underwater camera system for real-time coral reef fish monitoring. Raffles Bulletin of Zoology, Supplement 14:273279.

Kendall, M.S., L.J. Bauer, and C.F.G. Jeffery. 2008. Influence of benthic features and fishing pressure on size and distribution of three exploited reef fish from the southeastern United States. Transactions of the American Fisheries Society 137:1134-1146.
Kolmos, K.J. 2007. Succession and biodiversity of an artificial reef marine protected area: a comparison of fish assemblages on protected and unprotected habitats. M.S. Thesis, The Graduate School of the College of Charleston, Charleston, South Carolina, USA. 77 pp .
Kurz, R.C. 1995. Predator-prey interactions between gray triggerfish (Balistes capriscus Gmelin) and a guild of sand dollars around artificial reefs in the Northeastern Gulf of Mexico. Bulletin of Marine Science 56(1):150-160.
Lindberg, W.J., T.K. Frazer, K.M. Portier, F. Vose, J. Loftin, D.J. Murie, D.M. Mason, B. Nagy, and M.K. Hart. 2006. Density-dependent habitat selection and performance by large mobile reef fish. Ecological Applications 16(2):731-746.
Lowry, M., H. Folpp, and M. Gregson. 2011. Evaluation of an underwater solid state memory video system with application to fish abundance and diversity studies in southeast Australia. Fisheries Research 110 (1):10-17.

Malcolm, H.A., W. Gladstone, S. Lindfield, J. Wraith, and T.P. Lynch. 2007. Spatial and temporal variation in reef fish assemblages of marine parks in New South Wales, Australia-baited video observations. Marine Ecology Progress Series 350:277-290.
Mason, D.M., B. Nagy, M. Butler, S. Larsen, D.J. Murie, and W.J. Lindberg. 2006. Integration of technologies for understanding the functional relationship between reef habitat and fish growth and production. Pages 105-116 in: Emerging Technologies for Reef Fisheries Research and Management. NOAA Professional Paper NMFS 5. Seattle, Washington.
McGovern, J.C., G.R. Sedberry, and P.J. Harris. 1998. The status of reef fish stocks off the Southeast United States, 1983-1996. Proceedings of the Gulf and Caribbean Fisheries Institute 50:871-895.
McGovern, J.C., G.R. Sedberry, H.S. Meister, T.M. Westendorff, D.M. Wyanski, and P.J. Harris. 2005. A tag and recapture study of gag, Mycteroperca microlepis, off the Southeastern U.S. Bulletin of Marine Science 76(1):47-59.
Mills, D.J., G. Verdouw, and S.D. Frusher. 2005. Remote multi-camera system for in situ observations of behavior and predator/prey interactions of marine benthic macrofauna. New Zeal Journal of Marine and Freshwater Research 39(2):347-352.

Parker, R.O. Jr. 1990. Tagging studies and diver observations of fish populations on live-bottom reefs of the U.S. southeastern coast. Bulletin of Marine Science 46(3):749-760.
Parker, Jr. R.O., A.J. Chester, and R.S. Nelson. 1994. A video transect method for estimating reef fish abundance, composition, and habitat utilization at Gray's Reef National Marine Sanctuary, Georgia. Fishery Bulletin 92(4):787-799.
Parker, Jr., R.O. and R.L. Dixon. 1998. Changes in North Carolina reef fish community after 15 years of intense fishing- Global warming implications. Transactions of the American Fisheries Society 127 (6):908-920.

Pelletier, D., K. Leleu, D. Mallet, G. Mou-Tham, G. Hervé, M. Boureau, and N. Guilpart. 2012. Remote high-definition rotating video enables fast spatial survey of marine underwater macrofauna and habitats. PLoS One 7(2):e30536 doi:10.1371/journal.pone. 0030536
Pickering, H. and D. Whitmarsh. 1997. Artificial reefs and fisheries exploitation: a review of the 'attraction versus production' debate, the influence of design and its significance for policy. Fisheries Research 31:39-59.
Powers, S.P., J.H. Grabowski, C.H. Peterson, and W.J. Lindberg. 2003. Estimating enhancement of fish production by offshore artificial reefs: uncertainty exhibited by divergent scenarios. Marine Ecology Progress Series 264:265-277.
Rose, C.S., A.W. Stoner, and K. Matteson. 2005. Use of high-frequency imaging sonar to observe fish behavior near baited fishing gears. Fisheries Research 76:291-304.
Sanders, R.M. Jr., C.R. Chandler, and A.M. Landry, Jr. 1985. Hydrological, diel and lunar factors affecting fishes on artificial reefs off Panama City, Florida. Bulletin of Marine Science 37(1):318-328.
Schobernd, C.M. and G.R. Sedberry. 2009. Shelf-edge and upper slope fish assemblages in the South Atlantic Bight: Habitat characteristics, spatial variation, and reproductive behavior. Bulletin of Marine Science 84(1):67-92.
Sedberry, G.R. 1988. Food and feeding of Black sea bass, Centropristis striata, in live bottom habitats in the South Atlantic Bight. Journal of the Elisha Mitchell Science Society 104(2):35-50.
Sedberry, G.R. and R.F. Van Dolah. 1984. Demersal fish assemblages associated with hard bottom habitat in the South Atlantic Bight of the U.S.A. Environmental Biology of Fishes 11(4):241-258.
Seim, H. 2003. SEA-COOS: A model for a multi-state, multi-institutional regional observation system. Marine Technology Society Journal 37 (3): 92-101.

Smith, C.L., and J.C. Tyler. 1973. Population ecology of a Bahamian superabethic shore fish assemblage. American Museum Novitates 2528:145-168.
Steimle, F.W. and W. Figley. 1996. The importance of artificial reef epifauna to black sea bass diets in the middle Atlantic Bight. North American Journal of Fisheries Management 16:433-439.
Struhsaker, P. 1969. Demersal fish resources: Composition, distribution and commercial potential of the continental shelf stocks off southeastern United States. USFWS, Fisheries Industry Research 4:261-300.
Thanner, S.E., T. McIntosh, and S.M. Blair. 2006. Development of benthic and fish assemblages on artificial reef materials compared to adjacent natural reef assemblages in Miami-Dade County, Florida. Bulletin of Marine Science 78(1):57-70.
Vose, F.E., and W.G. Nelson. 1994. Gray triggerfish (Balistes capriscus Gmelin) feeding from artificial and natural substrate in shallow Atlantic waters of Florida. Bulletin of Marine Science 55(2-3):13161323.

Watson, D.L, E.S. Harvey, M.J. Anderson, and G.A. Kendrick. 2005. A comparison of temperate reef assemblages recorded by three underwater stereo-video techniques. Marine Biology 148(2):415425.

Watson, D.L., E.S. Harvey, G.A. Kendrick, K. Nardi, and M.J. Anderson. 2007. Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone. Marine Biology 152(5):1197-1206.

Supplement 1. Taxonomic identifications, partitioned by ecological grouping, observed in 25,482 video data files collected during periods of suitable visibility and depth of field at a small, patch AR on the middle continental shelf off the coast of Georgia. The total number of occurrences is provided with respect to the number of observation periods (No. of periods).
The chronological order of first observation (Obs. rank; 1 to 106) is also provided. "Species / groups analyzed (*)"

| Benthic residents | No. of periods | Obs. rank | Mid-water visitors | No. of periods | Obs. rank | Avian | No. of periods | Obs. rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acanthurus bahianus | 6 | 66 | Aurelia marginalis | 3 | 86 | Gavia immer | 53 | 21 |
| Aluterus sp. | 18 | 72 | Caranx sp. | 882 | 35 |  |  |  |
| Aluterus schoepfi | 14 | 42 | Caranx crysos | 711 | 1 | Cryptic, benthic | No. of periods | Obs. rank |
| Aluterus scriptus | 1 | 80 | Caranx ruber | 11 | 33 | Apogon sp. | 160 | 104 |
| Anisotremus virginicus | 16 | 68 | Chrysaora quinquecirrha | 189 | 76 | Apogon pseudomaculatus | 159 | 16 |
| Archosargus probatocephalus | 59 | 45 | Clupeidae | 6 | 57 | Gobiesocidae | 1 | 48 |
| Balistes sp. | 329 | 50 | Ctenophora | 435 | 9 | Halichoeres sp. | 74 | 75 |
| Balistes capriscus* | 323 | 19 | Cyanea capillata | 2 | 74 | Halichoeres bivittatus | 64 | 77 |
| Canthidermis sufflamen | 1 | 64 | Decapterus sp. | 2479 | 2 | Inachidae | 5 | 53 |
| Centropristis sp.* | 1036 | 31 | Decapterus macarellus | 1 | 94 | Parablennius marmoreus | 37 | 51 |
| Centropristis ocyurus | 54 | 79 | Etrumeus teres | 13 | 4 | Podochela sp. | 2 | 83 |
| Centropristis striata | 755 | 23 | Euthynnus alletteratus | 138 | 20 | Pomacentrus sp. | 307 | 40 |
| Chaetodipterus faber* | 1566 | 17 | Loligo sp. | 1 | 105 | Pomacentrus diencaeus | 49 | 87 |
| Chaetodon sedentarius | 1 | 90 | Mixed Forage/Juveniles | 4222 | 13 | Pomacentrus leucostictus | 6 | 93 |
| Chilomycterus schoepfi | 1 | 73 | Mola mola | 83 | 26 | Rypticus sp. | 122 | 101 |
| Diplodus holbrooki | 1 | 69 | Pomatomus saltatrix | 1 | 88 | Rypticus maculatus | 121 | 54 |
| Equetus sp. | 27 | 59 | Rachycentron canadum | 68 | 32 | Serranus subligarius | 245 | 65 |
| Equetus lanceolatus | 1 | 60 | Sardinella aurita | 5 | 55 | Unid Cryptic | 260 | 24 |
| Equetus umbrosus | 14 | 71 | Selar crumenopthalmus | 195 | 6 | Unid Invert | 21 | 15 |
| Haemulon sp. | 4923 | 14 | Seriola sp. | 1163 | 10 |  |  |  |
| Haemulon aurolineatum* | 4871 | 5 | Seriola dumerili | 410 | 41 | Commensal | No. of periods | Obs. rank |
| Holocanthus sp. | 293 | 78 | Seriola fasciata | 1 | 43 | Remora remora | 10 | 36 |
| Holocanthus bermudensis | 175 | 25 | Seriola rivoliana | 174 | 47 | Echeneis sp. | 14 | 82 |
| Holocanthus ciliaris | 5 | 95 | Seriola zonata | 1 | 103 | Echeneis naucrates | 13 | 81 |
| Lactophyrs sp. | 18 | 96 | Sphyraena sp. | 663 | 98 |  |  |  |
| Lactophyrs quadricornis | 13 | 49 | Sphyraena barracuda | 659 | 11 | Suprabenthic nomads | No. of periods | Obs. rank |
| Leiostomus xanthurus | 1 | 100 | Sphyraena guachancho | 2 | 102 | Carcharinus sp. | 104 | 85 |
| Lobotes surinamensis | 1 | 63 | Stomolophus meleagris | 1 | 99 | Carcharinus brevipinna | 4 | 84 |
| Lutjanus sp. | 201 | 29 | Stronglyura marina | 38 | 56 | Carcharinus limbatus | 14 | 89 |
| Lutjanus campechanus | 23 | 44 | UnID Finfish | 516 | 3 | Carcharinus plumbeus | 43 | 8 |
| Lutjanus cyanopterus | 9 | 91 | Unid Forage | 917 | 7 | Carcharinus taurus | 4 | 58 |
| Lutjanus griseus | 8 | 61 | Unid Jellyfish | 3 | 97 | Caretta caretta | 37 | 28 |
| Mycteroperca sp.* | 1646 | 22 | UnID Juvenile | 214 | 27 | Dasyatis sp. | 85 | 38 |
| Mycteroperca microlepis | 855 | 39 | Unid Pelagic | 245 | 30 | Dasyatis centroura | 10 | 46 |
| Mycteroperca phenax | 107 | 37 |  |  |  | Ginglymystoma cirratum | 166 | 34 |
| Pagrus pagrus | 2 | 52 |  |  |  | Rhizoprionodon terraenovae | 1 | 70 |
| Pterois volitans | 37 | 67 |  |  |  | Unid Elasmobranch | 1 | 62 |
| Rhomboplites aurorubens* | 1826 | 12 |  |  |  | Unid Shark | 2 | 92 |
| Stenorhynchus seticornis | 2 | 106 |  |  |  |  |  |  |
| Unid Reef Fish | 2020 | 18 |  |  |  |  |  |  |


[^0]:    Proceedings of the $66^{\text {th }}$ Gulf and Caribbean Fisheries Institute November 4-8, 2013 Corpus Christi, Texas USA

