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ABSTRACT 
Underwater video is currently being used by many scientists within NMFS to observe, identify, and quantify living marine 

resources. Processing of video sequences is typically a manual process performed by a human analyst. Partial automation of this 

time consuming and labor intensive analysis process will make data from underwater video more cost effective and available in a 
more timely fashion. This work introduces a technique for automatic fish classification in underwater video. The technique is based 

on a series of processing steps. Background processing is used to separate moving objects from the still background. Object tracking 

is used in order to associate different views of the same object found in consecutive frames. This step is especially important since 

successfully recognizing and classifying one of the views as a species of interest allows marking all views in the sequence as that 

particular species. Feature extraction using Fourier Descriptors is used to extract characteristic information from the shape of each 

identified object. Finally, a nearest neighbor classifier is used to classify identified objects as one of the species of interest. Results 
demonstrate the performance of the proposed technique in terms of correct classification and false alarms for three species, namely 

trigger fish, red grouper, and yellow tail snapper. 
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INTRODUCTION 

Marine biologists use underwater video sequences to study behavior and migration patterns of fish, to identify new 

species of fish, and to perform population analysis. Experts analyze videos manually, which is a tedious process consuming 

many hours to analyze one video. Automating this process, at least partially, will reduce the time and labor required to 

analyze the videos.  

Most of the previous research done in this area has been in human controlled environments such as in fish tanks with 

adequate lights (Castignolles et al. 1994, Semani et al. 2002) and for fish taken out of water (White et al. 2006, Storbeck et 

al. 2000, Amer et al. 2011). Recently, a system to classify fish in their natural environment has been developed (Spampinato 

et al. 2010). This system extracts trajectories and associates fish with these tracks to study their behavior. In our system, 

tracking is used to classify fish in an uncontrolled environment. We assume that fish will be present in more than one frame. 

Individual fish are tracked to acquire multiple views of fish from consecutive frames. If one view of a fish is not appropriate 

for classification, it is expected that, as it moves, it may turn revealing a good side view and outline, and thus be classified 

correctly.  

In this paper, we propose a system to classify fish in underwater video sequences. We consider three species, Epineph-

elus morio, Ocyurus chrysurus and Balistes capriscus, which are found frequently in the Gulf of Mexico. The first step in 

automating the process is to separate the fish regions from background, track the paths of all fish and finally classify each 

fish. The rest of the paper is as follows: Section 2 describes the background extraction, subtraction and thresholding of 

images to separate fish regions from surrounding background. Section 3 provides a brief description of Kalman filtering 

used for extraction of fish tracks. Section 4 presents Fourier descriptors to represent the shape of fish. Classification using a 

nearest neighbor classifiers is described in section 5. Section 6 presents classification results for the three species. Lastly, 

conclusions are presented in Section 7. 

 

BACKGROUND PROCESSING 

Background subtraction is used to distinguish the objects of interest (fish in this particular application) from their 

surroundings. The main steps involved are computation of the background image from multiple frames, subtraction of the 

background image from the current frame, and thresholding of the background-subtracted frame (Figure 1).  

In order to calculate the background image, L consecutive frames, Fl  , l = 1,…, L, are considered. It was observed that the 

image contrast does not remain constant throughout the frame sequence. In order to alleviate this problem, the contrast of all 

frames is adjusted to that of the first frame, F1. The median, MFl , of all pixel  values in Fl , is a robust measure of the frame's 

intensity. On the other hand, the average can be affected by extreme pixel values caused due to the entering of new fish in 

the camera's field of view, or due to noise. Contrast adjustment is achieved by multiplying all pixels in Fl , with MFl /MF1 . 
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More specifically, if Fl (x,y) - B (x,y) > S(x,y) 

 T, Fl (x,y) is considered to be associated with a fish. In the 

thresholded frames, fish and background pixels are marked 

as “white” and “black”, respectively. Region growing is 

used to group white neighboring pixels. Each such group 

represents a candidate fish region. Regions smaller than a 

certain number of pixels are considered to be noise and are 

eliminated. 

 

Tracking 

An object is tracked from the point it enters until the 

point it exits the camera’s field of view. Thus, information 

about the fish is collected from multiple frames. Tracking 

is helpful when a single fish view is unsuitable for 

classification. Having multiple views of the same fish 

increases the chances of obtaining at least one side-view, 

which can be successfully recognized. In this paper, the 

Kalman filter is used for fish tracking. The state vector 

includes information about the fish during tracking. This 

information is the fish center, (cx,cy), the coordinates of the 

top left and bottom right points, (btx,bty ) and (bbx, bby), of 

the rectangular bounding box enclosing the fish region, and 

the velocity of the center (vx,vy). In other words, the state 

vector of the fish in the l-th frame is  St  = [cx
(l), cy

(l), vx
(l), vy

(l), btx
(l), bty

(l), bbx
(l), bby

(l)]T. The bounding box endpoints 

are chosen since the size of the bounding box is associated 

to the size of the fish area. Multiple fish regions are tracked 

simultaneously, each by a different Kalman filter. A 

constant velocity model is assumed. 

The Kalman filter operations can be divided into two 

stages: prediction and correction (Li et al., 2010; Li et al., 

2009). During the prediction stage, the filter obtains the a 

priori estimate for the current state, 
˄sl

-
  using the previous 

state estimate, sl-1, as shown in eq. (5). In this work, the 

vector of observations, zl, includes the same variables as 

the state, but in zl, these are not predicted or estimated, but 

calculated directly from the image data. The first time a 

fish region enters the field of view, its state is initialized 

according to the real observations, zl, except the velocities 

which are set equal to zero. The state transition matrix, A, 

relates the previous state, sl-1, with the present state. 

Moreover, wl is the process noise, which is assumed to 

follow a zero-mean, white gaussian distribution.  

 

For simplicity, in what follows, the term frame and the 

notation Fl are used to refer to the contrast-adjusted 

frames. 

For the purpose of reducing the memory resources 

required for processing, the set of L frames is divided and 

processed in groups of N frames, such that MN = L. For 

each group, a partial background image, Bm(x,y), m = 

1,..., M, is obtained, where (x, y) represent the horizontal 

and vertical image coordinates. More specifically, each 

pixel in  Bm(x,y) is calculated as the median of corre-

sponding pixels in all N frames: 

(Bm(x,y)  = med(Fl(x,y))      (x, y)    

                  (1) 

The final background image, B (x,y), is computed as the 

median image of the M partial background images: 

 

B (x,y) = med (B (x,y ))     (x, y)   

        (2) 

Usually B(x,y) is obtained by frame averaging, 

which causes shadowing due to non-background objects 

found in some frames. However, if a fish occupies 

location (x, y) in less than half of the frames being 

processed, the median at (x, y) still corresponds to a 

background pixel. In eq. (2), B(x,y) is a good approxima-

tion to the median computed using all L frames. 

A variance-like measure, S2(x,y), is calculated for 

each pixel as follows: 

 

(x, y) = med((( - B (x,y))2) (x, y) Over l frames            

           (3) 

 

 S2(x,y) =  med(Bm(x, y))  (x, y)   Over m frame 

                                  (4) 

It can be observed that if the median is replaced by 

the average, S2(x,y), is identical to the sample variance of 

corresponding pixels located at position (x, y) in the L 

frames. A user-defined threshold parameter, T, is used to 

specify which pixels are significantly different from the 

background.  

Figure 1. Background Processing Steps: (a) Background image, (b) an original frame, (c) thresholded frame 

A B C 



Page 278  66th Gulf and Caribbean Fisheries Institute  

In order to associate the i-th fish region in Fl-1, namely 

Ri
(l-1), to one of the regions in Fl, namely Rj

(l), j = 1,…., J, 

the Euclidean distances between the state estimate      of  Ri

(l-1) and the real observations zl of all Rj
(l) are computed. 

The Rj
(l) associated to the smallest distance, Emin , is 

associated to Ri
(l-1) only if Emin and the size difference of the 

two regions are each smaller than a user-defined threshold. 

Otherwise, it is assumed that either a region splitting or a 

merging has occurred, and a new filter is assigned to track 

the new region. 

During the correction stage, the filter corrects     using 

the respective zl to obtain the a posteriori estimate     . The 

estimate     is used as sl-1 in the next frame. The measure-

ment matrix, H, in eq. (6) associates state predictions with 

observations, zl, and K is the Kalman gain. 

 

   = Asl-1 + wl-1 

                                                                                          (5)           

  = +Kl (Zl—H      )                     

                                                                                      (6) 

 

As the fish regions are tracked, they are classified on-

the-fly using the classifier presented in section 5. The next 

section discusses the features used for recognition of 

Epinephelus morio (EM), Ocyurus chrysurus (OC) and 

Balistes capriscus (BC). 

 

Feature Extraction using Fourier Descriptors 

Fourier descriptors (FD) use shape outline information 

to represent an object in the frequency domain (Zahn and 

Roskies, 1972). The FDs of a shape are computed using the 

coordinates of the shape’s boundary points. Consider an P-

point outline with (xp , yp ) as the horizontal and vertical 

coordinates of the pth point, and cp = xp + iyp as the complex 

representation of the point coordinates. The FDs are 

calculated as follows: 

 

D(k)  =                        , k = 0, 1,…, P-1  
      (7) 

The lower- and higher-frequency descriptors represent, 

respectively, the general shape and the finer details of the 

shape. Fish regions tend to have relatively smooth edges. 

Thus, the significantly high-frequency FDs can be ignored. 

The absolute FD values, |D(k)| are invariant to fish rotation 

since the FD phases are ignored. 

All points on the boundary are used for calculating the 

FDs. To make the FDs invariant to fish region size, the 

FDs magnitudes are normalized using the average of D(1) 

and D(P-1) (Lin and Chellappa, 1987). The FDs for k = 1,

…, 128 and k  =  P-128,…., P-1 are used in this work since 

they correspond to lower-frequency FDs. Plots of the FDs 

corresponding to BC, EM, and OC are shown in Figures 

(2a), (2b), and (2c). respectively. 

 
 

A 

B 

C 

Figure 2. Templates and Fourier Descriptors of (a) B. ca-
priscus, (b) E. morio, (c) O. chrysurus. 
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Classification 

In this work, a Nearest Neighbor classifier (NNC) is 

used to classify feature vectors consisting of absolute 

normalized FD values. Based on the NNC algorithm, 

feature vectors with known classification (exemplars) are 

used to represent each of C classes. The q-th exemplar of 

the c-th class is defined as Dc,q, where c = 1,…, C, and q = 

1,…., Q. The distance measure between a feature vector 

with unknown classification and each of the exemplars is 

used to classify the feature vector, and therefore its 

associated object, to one of the classes. The FDs of the EM, 

OC and BC templates shown in figure (2) are used as the 

exemplars. Therefore, currently, Q = 3 for EM and BC, and 

Q = 4 for OC. However, a larger number of exemplars per 

class may be necessary for effective classification of a 

larger number of species.  

A weighted Euclidean distance is used in the NNC. 

The square of the distance is defined as follows: 

 

dist2  (Dc,q , Dt )  =                                          

        (8) 

 

The weight, wc, is the average square Euclidean distance 

between Dc and a few FD vectors extracted from subjec-

tively ”good” views of fish that are known to belong to 

class c.  

Essentially, wc  is the sample variance associated with 

the multivariate feature distribution of class c, assuming 

that the covariance matrix of such distribution is diagonal 

with all diagonal elements equal to wc. A fish region with 

corresponding vector Dt is temporarily assigned to the class 

c of minimum (dist2 Dc,q , Dt). When NNC does not classify 

the region as EM, OC, or BC, the fish is labeled as ’Not 

Fish’, which implies that the fish does not correspond to a 

fish or at least not to a fish of interest. Fish regions at the 

frame borders are not classified, since they are usually 

incomplete, and are marked as ’Not Fish’ (Figures 3 - 6). 

 

RESULTS 

This section presents performance evaluation results 

for more than 3000 frames consisting of EM, OC, BC as 

well as other species of fish. All fish regions within a frame 

are automatically identified and segmented out of the 

overall frame.  

In all experiments, the Kalman filter covariance 

matrices for the process noise and measurement noise were 

assumed to be diagonal, with diagonal values equal to 0.05 

and 0.9, respectively. The threshold used for the square 

distance of eq. (8) was empirically chosen to be 0.36. As 

mentioned earlier, if the distance in eq. (8) is greater than 

the chosen threshold, then the region is classified as a fish 

of no interest. This threshold may be increased to be able to 

classify more shapes as one of the three species. In this 

case, all regions in the sequence are classified as this 

species. Figures 3 - 5 depict different example sequences. 

For each sequence, the top leftmost image shows the fish 

as detected for the first time. The black and white image to 

its right is the corresponding thresholded image obtained 

by the background subtraction process. Moving from left to 

right, and then from top to bottom, pairs of images show 

the same fish and its corresponding thresholded image as 

seen in consecutive frames. The identification of the 

bounding box enclosing the fish, as well as the association 

of the fish region from one frame to the next are performed 

automatically by the algorithm.  

It can be observed from Table 1 that the classification 

of individual fish regions based on the NNC produced a 

small percentage of false alarms. Although in the case of 

EM, OC, and BC, only a small percentage of individual 

fish regions were recognized for each sequence this was 

sufficient to classify the whole sequence as a particular 

species. This is illustrated in Tables 2-4. For instance, 

Table 2 presents classification results for ten different BC 

sequences (each row corresponds to a different sequence). 

Figure 3. Classification results for B. capriscus. 

Figure 4. Classification results for E. morio. 

Figure 5. Classification results for O. chrysurus. 

Figure 6. Classification results for other species. 
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In 5 out of 10 sequences, the fish regions were recognized 

at least once, which implies that all fish regions in these 5 

sequences were recognized. In total, BC was recognized in 

122 out of 190 frames. The last column describes the main 

reason why fish regions in each sequence were not 

recognized. Similarly, Table 3 presents classification 

results for 13 EM sequences. The EM regions were 

recognized at least once in 6 out of 13 sequences, and in 

total, EM was recognized in 217 out of 513 frames. Table 4 

presents classification results for 7 OC sequences. It can 

observed that OC has 100% recognition, i.e., all 7 OC 

sequences,  were classified correctly.  

It should be mentioned that in several cases when fish 

regions are not recognized, the reason is that there is no 

appropriate side view of the fish in the whole sequence. 

For example, in the first two sequences in Table 3, the fish 

faces the camera for 21 and 54 frames respectively. An 

example is shown in Figure 8. Therefore, it is expected that 

even an expert may not be able to identify the species from 

these sequences. However, these sequences are tracks of a 

single fish which the tracking algorithm failed to connect. 

In fact, in Table 3, rows 1 to 8 represent broken tracks of 

same fish. If the tracking algorithm is further improved, all 

these sequences would be combined and thus could be 

classified as EM. This would also improve the classifica-

tion rate of our system. The fish shapes, shown in Figure 6, 

are not suitable for classification, since the fish starts 

turning away from the camera. Figure 7 presents false 

alarms. It can be noticed that shape of shark somewhat 

resembles OC and thus is classified as an OC. 

 

CONCLUSIONS 
This paper proposes a system to automatically classify 

fish in a non-controlled environment using underwater 

video cameras and image processing algorithms. Future 

work includes further improving the tracking algorithm in 

order to merge broken tracks of same fish sequence. 

Another technique that will be investigated is multiple 

thresholding in order to reduce the effect of using a fixed 

threshold for background subtraction. 

It has been observed that most often, misclassifications 

occur due to lack of appropriate side views of the fish 

within the whole sequence, due to poor camera views, and 

due to fish region merging. 

 

Table 1. Performance evaluation. 

Species 
% Correctly 
classified 

% Miss-
classified 

Balistes capriscus 64.21% 0.005% 

Epinephelus morio 42.3% 0% 

Ocyurus chrysurus 65.26% 0.05% 

Other Species 45% 55% 

Table 2. Classification results for B. capriscus. 

Number 
of 

frames 

Classified as B. capriscus 
by NNC (# of fish  
classified as BC) 

Miss-classified as other 
species by NNC (# of fish 
classified as EM or OC) 

Explanation 

31 Yes (3) No (0) - 

17 Yes (1) Yes (1 classified as OC) 
The distance of this pattern is closer to BC than OC. 
Hence it will be classified as BC. 

32 Yes (5) No (0) - 

28 Yes (1) No (0) - 

22 No (0) No (0) 
The resolution for this fish is not good enough for it to be 
detected from background. 

14 Yes (2) No (0) - 

7 No (0) No (0) 
This fish region stays merged with another fish region for 
entire track. Hence it cannot be classified. 

11 No (0) No (0) 
The fish is always at the corners of frame. Hence it cannot 
be classified. 

17 No (0) No (0) 
Fish region merged with another region and view of fish is 
bad. 

11 No (0) No (0) 
This fish region stays merged with another fish region for 
entire track. Hence it cannot be classified. 

Figure 7.  False alarms. 
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Table 3. Classification results for E. morio. 

Number 
of frames 

Classified as E. Morio by NNC 
(# of fish classified as EM) 

Miss-classified as other species by 
NNC (# of fish classified as BC or OC) 

Explanation 

21 No (0) No (0) 
Bad view - fish faces camera. (as shown 
in figure 8) 

54 No (0) No (0) Bad view - fish faces camera. 

3 No (0) No (0) Bad view - fish faces camera. 

21 No (0) No (0) Bad view - fish faces camera. 

10 No (0) No (0) Bad view - fish faces camera. 

50 Yes (2) No (0) Bad view - fish faces camera. 

70 No (0) No (0) Bad view - fish faces camera. 

39 Yes (5) No (0) - 

13 Yes (8) No (0) - 

47 Yes (3) Yes (1) - 

57 No (0) No (0) Bad view - fish faces camera. 

61 Yes (4) No (0) - 

7 Yes (1) No (0) - 

Table 4.. Classification Results for O. chrysurus 

Number of 
frames 

Classified as O. Chrysurus by NNC (# of 
fish classified as OC) 

Miss-classified as other species by NNC (# 
of fish classified as BC or EM) 

Explanation 

9 Yes (1) No (0) - 

4 Yes (1) No (0) - 

5 Yes (3) No (0) - 

6 Yes (2) No (0) - 

2 Yes (2) No (0) - 

5 Yes (1) No (0) - 

3 Yes (1) No (0) - 
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Figure 8. Classification results for bad view of EM. 


