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ABSTRACT

Queen conch, Strombus gigas, is an important commercial resource in the Turks
and Caicos Islands (TCI). The TCI government is funding the development of an
agent-based model (ABM) to help better understand queen conch distribution and
manage the artisanal fishery. ABMs are built from the ‘bottom up’ and simulate
each individual agent — conch, fishers and the fishery manager— within the pertinent
system. Agents follow relatively simple rules of behavior at the individual level but
can engage in behavior that leads to complicated aggregate patterns of interaction.
ABMs permit modelers to perform a variety of resource management experiments
in a computer-generated artificial fisheries management laboratory, potentially
increasing our ability to implement the principle of adaptive management while
reducing the risk and/or time lags of real-world experiments. The purpose of this
paper is to outline the development of the spatial components of a pilot model in
which simple foragers (conch) live, grow, and disperse. The mode! of the South
Caicos East Harbor Lobster and Conch Reserve (EHL.CR) uses habitat data derived
from Landsat 7 satellite imagery as an environmental base and is implemented using
the Swarm modeling platform. In the model, conch survival is dependent on (1)
food inteke and (2) mortality risk within each habitat type. The challenges of
expanding the model from this pilot phase to incorporate more sophisticated fisher
and fishery management agents in an expanded commercial fishery model are
outlined.
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INTRODUCTION

An important commercial fishery for queen conch (Strombus gigas) exists in the
Turks & Caicos Islands. As an Appendix 2 species under CITES, the government
of the TCI is mandated to manage the fishery sustainably in order for TCI exporters
to maintain access to international markets for conch. Sustainable management of
the conch fishery requires an understanding of the distribution and population
dynamics of queen conch on the Caicos Bank. In addition, it requires that fishery
managers understand how fishers react to alternative policies that might be used to
manage the conch fishery. Without such insights, the TCI conch fishery may well
be over-fished and follow the decline of other fisheries in the Caribbean region (see
Appeldorn 1994).

Traditional fisheries science models can be used to set aggregate total allowable
catch (TAC) for the conch fishery in the TCT (Medley and Ninnes 1999), but provide
litle insight about the effects of alternative policy approaches for fishery
management when species distribution is patchy and/or fishers are heterogeneous in
skills or preferences. Increasing computer power and the recent development of
powerful object-otiented programming languages and geographic information
systems (GIS) have opened up opportunitics for alternative approaches to fishery
modeling. Agent-based models (ABMs) (or individual-based models, as they are
known by ecologists) are one such new modeling tool (¢.g., Railsback et al. 1999,
Janssen et al. 2000, Kohler and Gumerman 2000).

ABMs, as the name suggests, incorporate individual agents into a model that
is spatially and temporally explicit. The environment itself can display heterogeneity
in resource endowment (¢.g., food, energy, space, habitat quality), distribution, and
rate of renewal. Populations of agents are represented by real numbers rather than
population densities. Autonomous agents are situated in the environment, can sense
it, and can both act on, and be affected by, the environment while pursuing individual
or collective goals. Agents interact locally with other agents in a spatially-explicit
model and, therefore, interact with an effectively low population (Uchmanski and
Grimm 1996).

In order to improve understanding of conch distribution and the effects of
various policy options on ecological and economic outcomes, a pilot agent-based
model of the South Caicos East Harbor Lobster & Conch Reserve (EHLCR) region
is being developed. The model will simulate key processes driving abundance,
Jocation, and production of conch. We use Landsat satellite imagery to develop an
environmental base for use within the Swarm modeling platform. Modeling
experiments will comparatively assess fishery policies, including design of this
important conch MPA. The purpose of this paper is to outline the development of
the spatial components of a pilot model of a fishery in which simple foragers (conch)
live, grow, and disperse.
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METHODOLOGY AND RESULTS

Image Preparation and Processing

A radiometrically-calibrated Enhanced Thematic Mapper plus (ETM+) image
acquired by Landsat 7 on 20 Sep 1999 was purchased from the US Geological
Survey by the School for Field Studies, Center for Marine Resource Studies
(CMRS). The procedures for various image preparation and analyses throughout
this project are largely based on protocol developed at the Center for the Study of
Institutions, Population and Environmental Change (CIPEC), Indiana University
(Green 1999).

The ETM+ sensor records data for three bands of visible (Bands 1, 2, 3 —
wavelengths of 0.450—0.515, 0.525 - 0.605, 0.630 — 0.690 microns, respectively)
and three bands of near infrared (NIR} (Band 4 - 0.75-0.90 microns} and infrared
(IR) (Bands 5 and 7 - 1.55-1.75 and 2.09-2.35 microns, respectively)
electromagnetic radiation at a resolution of 30 meters. It also records a thermal
band (Band 6, 60-m resolution), and a high-resolution (15 - m) visible band (Band
8), which were not used in this project. Each band at 30 - m resolution consists of
7,801 columns and 6,941 rows of data. Thus, there are almost 325 million data
points for the six relevant visible and infrared bands. Figure 1 shows the footprint
of the Landsat 7 image.
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Figure 1. Landsat 7 Footprint in relation to the Turks and Caicos Islands study site
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A sub-scene of the eastern Caicos Bank was geometrically registered (RMS
error = 14.5 - m, about one-half pixel) using 1:10,000 topographic maps of the
region and Idrisi32 image processing software (Eastman 1999). Geometric
registration warps the 2-dimensional satellite image of the 3-dimensional surface of
the earth to make it coincide with mapping systems. A study area of 301 columns
by 251 rows (68 km?, 30 m resolution), including all of EHLCR, was selected from
the registered sub-scene. Masks were applied to land, exposed sand, and deep-water,
leaving submerged banks and reefs for spectral analysis.

For the pilot model, we used digital numbers (DNs) that measure at-sensor
reflectance at the satellite rather than calibrated surface reflectance (i.e., comrected
for atmospheric disturbance); the patterns for DN and surface reflectance should be
closely correlated. Because water rapidly absorbs infrared radiation, most of the
work done in this project utilizes visible light from Bands ! (blue), 2 (green) and 3
(red).

Scatterplots were used to plot the reflectance of combinations of Bands for the
entire image without reference to spatial location. Figure 2 shows the scatter plot
for Band 3(red) versus Band 1(blue) reflectance.
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Figure 2. Scatterplot of Band 3 (red = light) versus Band 1 (blue = dark)reflectance

as measured by digital numbers (DNs)
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The use of scatterplots underlies Spectral Mixture Analysis (SMA) (¢.g.
Schweik and Green 1999). In SMA extreme ‘end members’ are defined — those
points at the most extreme fringes of the scatterplots —as areas of “pure” habitat type
and used to classify other intermediate pixels as some linear combination of the end
members. Using Datadesk software (Velleman 1997), it is possible to locate
particular pixels or groups of pixels from the scatterplot in a spatial image of the
study area, thus making it possible to associate particular habitat types with specific
ranges of Bands 1 and 3 DNs. In our preliminary habitat classifications, we found
that certain distinct habitat types tended to be closely grouped in the Band 3 vs Band
1 scatterplot. Afier exploratory analtyses, we partitioned the scatterplot into 18 zones
(Table 1), each of which is thought to represent a different type of habitat that is
meaningful for the pilot ABM.

Fine-scale partitions in the areas of low reflectance were used to distinguish
important differences between a variety of reef, seagrass and gorgonian-sponge
habitats. The classification also shows algal plain and patches very well and
distinguishes known fine-scale habitats crucial for conch nurseries and juvenile
rearing (Danylchuk et al. in press). The classification will undergo further
refinement and accuracy assessment in the near future.

Figure 3 shows a gray-tone image of the classified EHLCR study site. Each of
the 75,551 pixels in the image was classified as one of the 18 habitat types or as
masked area. This spatially referenced habitat data was exported from Idrisi32 to
a text file, and subsequently imported into the Swarm modeling platform to
construct the environmental base of the agent-based conch model.

Agent-Based Model Development using Swarm

The Swarm project was started at the Santa Fe Institute in 1994 and the first
public simulation toolbox made available in 1995. Swarm is a collection of software
libraries in the object oriented programming language, Objective-C, and now
avaijlable for models written in Java. Swarm provides a platform for developing and
documenting computer experiments that use collections of independent agents that
interact in discrete space and time.

Diverse users in the natural and social sciences have developed the Swarm
Iibraries, which can, according to Steffanson (1997), be broadly organized as classes
of objects that:

i) Build spatial environments for agent interaction and handling information;

ii) Automate data collection and analyze data output visually or statistically;

iif) Maintain objects (e.g., conch, fishers) in structured collections (e.g.,

arrays) that can be readily manipulated (e.g., sorted, ranked, culled);

iv) Schedule periodic events at variable time-steps or to be triggered

dynamically;

v) Probe simulation objects during simulations (e.g., how many conch are in

a particular pixel grid) and adjust parameter values; and

vi) Generate random nurbers that facilitate Monte Carlo analysesand random

seeds that can be used to control the replicability of simulation runs.
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‘tabie 1. Partitions zones for scatterplot of Band 3/Band 1reflectance (measured

by digital numbers, DN) and preliminary habitat type classifications

Band 3 DN Band 1 DN Preliminary habitat type
1 10 < B3 < 32 10<B1 <116 Dense and/or deep seagrass
2 33:<b3 <55 10<B1<88 Medium-dense seagrass
3 44 <B3 <55 89 < Bt <102 Medium seagrass
4 33:B3:543 89 < B1 < 102 Light seagrass (or deep reef)
5 33:<B3<55 103 <B1 <116 Deep gorgonian-sponge
8 10<B3 <55 117 < B1 5 142 Shaliow gorgonian-sponge
7  10s<B3<55 143 < Bt < 300 Mid-depth algal plain
8 56 s B3 < 104 i0<B1s116 Dense red algae
9 56 s B3 < 104 117 < B1 < 147 Red algae/shallow coral
10 56<B3s 104 148 s B1< 175 Sandalgal plain
11 56 < B3 s 104 176 < B1 < 300 Shallow algal plain
12 105sB3 <188 10 < B1 < 161 Very shallow algal plain
13 105<B3 <130 162 < B s 200 Sand
14 105sB3 <130 204 < B1 <300 Shallow sand 1
15 131:<B3 <188 162 < B1 < 203 Shallow sand 2
16 131:<B3 <188 204 < B1 < 300 Exposed sand
17 189:B3: 300 10 < B1 < 220 Exposed sand
212 < B3 < 300 10 < B1 < 226
251 < B3 < 300 10 < B1 < 300
18 189sB3 <21 221 < B1 < 300 Exposed sand/shel! debris
212 s B3 < 250 227 < B1 5 300
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Figure 3. Gray-scale image of habitat classification (black = land/sea mask;
classes 1 - darkest gray to 18 - white} at the South Caicos study site

In developing a Swarm model, the modeler’s role is to define the types of
objects and agents in the model, the behavior of each type of agent, and how the
system is observed. Agent behaviors are designed following the recommendations
of Railsback (2001), considering such issues as which behaviors should be forced to
reproduce observed behaviors vs. emerging from a mechanistic representation of the
causal processes. We attempt to capture the key processes driving agent behaviors
using very simple representations of the processes. To date, only habitat cells and
adult conch have been designed in detail. In the pilot conch model, we have defined
the following important objects and agents.

Habitar Cells — are based on the 30-m ETM+ pixels described above. Habitats
cells mode! food production and keep track of food consumption by conch and the
resulting food availability; at any time step when food consumption by conch
exceeds food produciion, food availability in the following time step is reduced.
Predation risks also vary among habitat cells as a function of the relative predator
abundance and quality of hiding cover for conch.
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Conch — are the primary model agents. Larval dispersion and settlement are not
currently modeled, although it would be feasible to integrate water flow, larval
dispersal and habitat-specific settlement in the future. Conch behaviors that are
simulated include feeding and growth, habitat selection, and mortality. Because
conch traits change over their life cycle, three life stages of conch are simulated
using different assumptions for each:

i) Juveniles — enter the model when they emerge after spending their first
year buried in sand. Juveniles are vulnerable to predation by fish, and use
all energy intake for growth. Habitat is selected to maximize the
individual’s probability of surviving to aduithood. This probability
decreases in risky habitat and increases with growth rate because rapid
growth reduces the time until adulthood is reached.

ii) Adults—are sexually mature conch not in the spawning period. Predation
is assumed to be a negligible risk, so fishing mortality is the only important
source of mortality. Energy intake is used for gamete production and
habitat is selected to maximize gamete production. Adults decide when to
become spawners by maximizing their expected reproductive success, a
function of their probability of surviving until the next spawning season and
the expected gamete production.

ifi) Spawners— are conch during reproductive activity. Habitat is selected to
obtain good spawning habitat and to maximize the probability of finding
mates.

Fishers — are agents representing people that fish for conch. Fisher behavior is
simple in the pilot model: we assume that fishers are simple profit maximizers that
need only be concerned with conch harvests and variable operating costs (i.e., fuel).
Much more complicated behaviors are possible in expanded models (¢.g., accounting
for risk preferences).

The Fishery Manager — is an agent that represents the agencies setting and
enforcing fishery management rules. A number of potential management rules are
easily modeled. For example, MPA boundaries can be changed to examine the
effects of different MPA configurations on aduit emigration of conch to adjacent
commercial fishing grounds. In addition, policies such as TACs, minimum size
limits, input taxes or subsidies, and export taxes can be modeled and compared. In
addition, probes can be used to simulate field sampling programs, enabling the
fishery manager to undertake virtual fishery science, setting policies to meet
objectives with less than complete information.

Several tools are provided for observing the simulations. The main animation
window shows all the habitat cells, colored by their habitat type. Individual conch
(and, eventually, fishing boats) appear as dots but the resolution is too coarse to
observe conch movement. A higher-resolution window can be opened to observe
conch within a selected subset of habitat cells; in these windows cells are colored by
food availability and conch are represented by line segments indicating their location,
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size, and movement direction. In addition, summary information (e.g., total conch
abundance by life stage; number of conch using each habitat type) can be obtained
via output files or screen graphs.

Model Parameterization

Model parameterization is in process, and is based on a variety of scientific
studies of feeding, movement and mortality (e.g., Stoner and Ray 1993, Stoner et
al. 1995. Stoner and Glazer 1998). Key processes that seem important in modeling
feeding include: larger conch can consume more food becanse they can move faster
and forage over a wider path; conch adjust their feeding distance with the availability
of food; and food competition can affect foraging behavior and intake. Three main
sets of parameters need to be defined — feed use and growth; movement; and
mortality risk.

Feeding — Conch (1) use food (detritus, algae, seagrass) that is produced slowly,
and (2) have limited movement compared to the 30 m grid cell size, thus making it
unrealistic that they compete for food at a daily time step. The approach we are
adapting is to assume a constant rate of food production, with accumulation and
depletion of food over time, subject to constraints of a zero lower limit and some set
upper limit. If the conch in & cell consume more food than is produced in a day, then
food availability on the next day is lower. This allows food production and
competition to oceur over times longer than a one-day time step.

Movement — We assume that adult conch move a distance determined by the
feeding model, and travel in the direction toward highest potential net energy intake.
Avoiding mortality risks is not included in the movement decision because we
assume in the pilot model that survival of adult conch does not vary with habitat.

Movement is simulated after feeding in the model’s daily schedule. Therefore,
the distance moved is a function of food availability in the habitat cell where the
conch starts its movement. If food is relatively scarce, this distance will be equal to
the variable AdwltForageSpeed (m/d); if food is abundance and the conch can obtain
its maximum daily food intake in less distance, then the distance needed to obtain
maximum food intake is used.

Potential movement destirations are each of the eight cells adjacent to the
conch’s current cell, plus the conch’s current cell. This approach assumes that adult
conch are capable of sensing gradients in food availability in all directions. We do
not necessarily assume that a conch “kmows”™ habitat conditions in adjacent cells.
We do assume that the conch can detect local gradients in habitat conditions, and
that such local gradients are represented by the differences among adjacent cells.

The best destination is the cell offering the highest net energy intake. The conch
calculates the net energy intake it would receive in each potentiat destination cell,
using the feeding methods described above. Ifany of the eight adjacent cells offers
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higher net energy intake than the conch’s current cell, then that cell becomes the best
destination; otherwise, the current cell is the best destination.

Mortality — We model natural mortality as a stochastic function of each conch’s
state and its habitat: the daily probability of survival is a function of conch state and
habitat. On each simulation day, a random number is drawn from a uniform
distribution between zero and one, for each type of mortality simulated. If the
random numbser is greater than the survival probability, the conch is assumed dead
of that type of mortality.

Following the evidence that natural mortality of adult conch is low (Appeldorn
1988), in the pilot model we simply assume a constant daily survival rate that is
independent of habitat, energy status, and age. This daily survival rate is specified
by the adult conch parameter adultSurvivalProb. A value of can be selected using
adultSurvivalProb = 0.5[exp{1/(n*365))], where n is the mean survival time, in
years, after conch achieve adulthood. We now use a mean survival time of 8 y, so
adultSurvivalProb is 0.99976.

DISCUSSION AND CONCLUSIONS

A pilot ABM of queen conch in the EHLCR has been developed and is
undergoing parameterization and calibration. The use of Landsat 7 ETM+ satellite
imagery has allowed the classification of the 68 km’ study area into 18 distinct
habitat types based on spectral reflectance characteristics in the blue and red
wavelengths. The 30 m resolution is useful as it allows differentiation of habitat
zones as small as a few hectares, which may play particularly important roles in
conch population dynamics within the MPA (Danylchuk et al. in press).

Methods for validating (testing the realism of} and analyzing (learning from)
ABMs are quite different from the methods typically used for conventional fishery
stock assessment models. Model validation and analysis are closely linked and focus
on the question of whether the agent behaviors included in the ABM produce
realistic patterns of individual- and system-level dynamics (Railsback in press).
Agents must be shown to exhibit realistic behavior patterns before results for the
entire fishery model can be considered valid.

Epstein {1999) argues for a criterion of generative sufficiency in ABMs. That
is, are micro-level specifications (i.e., rules of behavior) sufficient to generate the
macro-level outcomes of interest {i.e., conch distribution, age structure, etc.)? If
more than one set of behavioral rules is sufficient to generate outcomes similar to
those observed in the field, then the ABM can point to important experimental
research questions that need to be addressed.

Behavior of model agents will be validated and analyzed by conducting a series
of simulation experiments that examine the extent to which observed behavior
patterns are reproduced. Alternative representations of key behaviors can be
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compared to determine which best reproduce observed patterns. Examples of
patterns that could be used for validation and analysis of conch behavior include:

i) Relative abundance of conch in various habitat types, and how it varies

with conch life stage;

ii) Migration timing and direction in juveniles and spawners; and

iii) How conch ages and size at adulthood varies with food availability and

growth.

The integration of the Swarm model and the Idrisi32 image processing and GIS
software also offers the opportunity for model] validation using advanced spatial
statistics (e.g., Cressie 1993). Over 4.8 haof EHLCR have been surveyed by CMRS
using integrated line and belt transects (Danyichuk et al. in press). In addition, the
Turks and Caicos Department of Environment and Coastal Resources (DECR) has
engaged in extensive surveys farther aficld in commercial fishing grounds using the
same methodology (Clerveaux and Danylchuk in press). Intotal, over 400 field sites
have been sampled to date, allowing for statistical comparisons of conch distribution
in the field and in the ABM. The work underway in the TCI queen conch fishery
should lead to new MPA modeling methodologies and insights as the model is
further developed in the future.
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