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ABSTRACT
Traditional fishery management models may be inappropriate for assessing
the highly dynamic tropical seas environment. The high dimensionality of
intraspecies interaction and interdependencies suggests that the structure typical
of many tropical muiticohort populations have deleterious consequences on
results obtained when constant parameterization and density-independent state
interactions are assumed. Tropical muiticohort populations may vitiate the
simple traditional management models. To examine this phenomenon, the
dynamics of any arbitrary number of n-interacting cohorts were modeled by
coupled second-order nonlinear differential equations and a supporting
numerical simulation scheme was developed. In the study even rigidly
deterministic systems showed dynamic limit cycles, Certain populations showed
little or no tendency to converge to expected equilibrium states. These features
suggest that the traditionally assumed “asymptotic stable-point equilibria,” may
be unrealistic for some system states. Implications for assessments derived from
traditional management models are discussed. Determinations of system state
space probabilities are explored. This approach may indicate the framework
necessary for moving expert systems for tropical fishery management from

diagnostic analysis to optimal decision making.

INTRODUCTION

Traditional yield models have gained general recognition as being reliable
for the description of population demographics over a spectrum of classes of
temperate marine fishes, Embedded within (hese mathematical models are
implicit assumptions requiring constant life history parameterization, low to
nonexistent population interactions, and equilibrinm states. Aunit (1988)
demonstrated that both the logistic assessment and dynamic pool classes of
autonomous density-independent models may be inadequate for expressing the
dynamics of tropical fishery stocks because they mneglect or condense the
age-structured interactions and feedbacks that structured populations actually
exhibit (Murdoch et al., 1975; Guckenheimer et ai., 1977; Botsford & Wickham,
1979). Because of the paucity of suitable data, very simple single-species
models with minimal data requirements have been touted for providing policy
support to fishery institution management in tropical regions (Munro, 1982;
Pauly, 1982; 1983). This presents a major paradox because virtually no
exploited fish population is ever in a steady state. Furthermore, the expected
vield from a given single-species fishery cannot be entirely dissociated from the
impact of the same stock on the abundance of its predators or food resources
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{Caddy & Sharp, 1986). Concepts like yield-per-recruit may also be of dubious
validity when recruitment is continuous, periodic and variable in time. In the
development of a model for a continuously-breeding population, differences in
the scales of events acting on the population should be reconciled. Gross
misinterpretations of stock abundance and productivity may occur when cohort
production is on a time scale significantly smaller than a year. Populations in
these cases may show little or no tendency to converge to expected equilibrium
state(s).

Although the probability that interspecific and intraspecific competition
influences the productivity of fish stocks has been widely recognized, the
difficulty has been in determining how to assess it. There are a paucity of
theoretical or research models on which to base expectations of popuiation
productivity where intraspecific competition is involved. Mathematical models
are typically of imerspecific competition and have been based largely on the
Lotka-Volterra equation (Lotka 1925, 1932; Volterra 1928, 1938). In these, but
two species — of population sizes N;, N, — are considered to compete
according to an extended Verhulst-Pearl scheme:

L N;= p;- p@N, + BN) m
Ni

This ordinarily leads to the extinction of one species and dominance of the other
al some static population level (Kerner, 1961; Haimovici, 1979a, 1979b). The
most serious deficiency of this approach is that no recognition of age classes,
nor any other vital statistic that may be pentinent, including time-lagged
behavior, is made (Larkin, 1963).

‘This paper focuses on the observations that the demographic characteristics
of tropical marine fish stocks are interrelated, strongly density-dependent, and
evolve continuousty with respect to time. The study’s objectives are:

1. To mathematically model multiple cobort interactions and dependencies.

2. To understand the evolution of tropical multicohort fishery systems by
developing a dynamic-systems numerical model that incorporates salient
population features through attention to continuous, deterministic
nonlinear age-structured methods.

3. To elucidate the properties of the model as a first step towards
understanding what is going on and how multicohort populations evolve
with respect to perturbations and time.
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Background to Study

There is a tendency among many population dynamicists, and even the
‘muddy boots’ ecologisis to interpret apparently ermratic data as either stochastic
“noise” or random experimental error. Anotber possibility is that some
deterministic models can pive rise to apparently chaotic dynamics (May &
Oster, 1976; Thompson & Stewart, 1986; May, 1987} (Figurel).

Population interactions among age-strata may be important determinants of
fish stock abundance in tropical multispecies environments. In general, there is
insufficient quantitative knowledge about the manner in which the demographic
characteristics of a given species changes with changes in population densities
(Beverton and Holt, 1957, Paulik, 1972; Pielou, 1977; Keyfitz, 1977).
Traditional management models may not be suitable for tropical environments
because the interactions and dependencies among multicohort populations
suggest that these populations may not have asymptotic, stable-point equilibria,
and as such may vitiate the simple traditional concepis. To further complicate
matters, simultaneous harvesting of large numbers of species in multiple species
systems may often manifest complex “catastrophic” system behavior whereby
the system is discontinuously transformed to multiple equilibrium states or
chaos as the harvest rates or environmental perturbations vary (Schaffer, 1985).

The principal value of nonlinear models is that they allow consideration for
the effects of crowding, resource limitation, and interactions. While inclusion of
nonlinearities in age-dependent population equation models increases their
mathematical difficulty, it also enbances their reliability for physical description
and behavior prediction (Webb, 1985). The mathematical underpinnings of the
subject discussed here are still rather esoteric by current standards in population
dynamics; nonetheless, the central notions are elementary. The model is pursued
based on the belief that more useful results are obtained from models that
include essential, biologically realistic nonlinearities than those obtained from
archaic lincar models with arbitrary auxiliary constraints. The mathematical
details of such a model are developed below.

The Multiple Cohort Model

Consider a contingous model of a long-lived organism and its population
dynamics given the underlying desire to understand the mean characteristics of
weight and density of each age strata and the entire population as a function of
time. For continuously-breeding populations the intrinsic population dynamics
consist of j cohort life stages which exhibit dependence upon the periodicity of
their entrance into the population. Each cohort life stage is affected by certain
exogenous mechanisms:

1. The resource assimilation rate
2. The size-or age-specific metabolic requirements
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3. Environmental carrying capacities for each age strata

4. Competition between cohorts

5. And population densities within and among cohorts, all of which
contribute to composite populations increases or decreases.

Let’s assume that the mean individual weight, W, of an individual in the i
age (= size) class is governed by the balance between the competition for
available environmental resources and the age-specific based metabolic rate.
With these constraints, we start with the general governing equation from the
classic energy balance, which can be written:

W, = (- o) W, @

where a dot denotes differentiation with respect to time, and

r; = resource assimilation or growth rate.
oy = intrinsic basal metabolic costs rate.

The term r, represents the intrinsic rate of increase which would be
approached if no limitations were placed on the increase in weight of the
respective cohorts if they were living in isolation. If we now consider that the
age-specific weight of the i individual can be influenced by its local cohort
density and the individual abundances of the other j cohort life stages, then
equation (2) can be transformed to:

i

If we set K, =1,/a;, we find that after a little rearranging:

W=t W, {K - N, - & b;/a)+N; }K; - W, @)
Now define:
a = environmental carrying capacities (i.e., intraspecific checks

on the rate of increase) for the cobort in lifestage i.

b, = competition coefficient between ensemble individual i and
the specific j cohort densities (i.e., provides for the effects of
each cohort on its competitor). By definition bij 20,V i

N, = population abundance for the i™ individual in cobort j.
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N;

population abundance for the j cohort.
where B, = Ibyfa; 1#] (5)

The term B, represents the ration of how much damping is generated by
competiting cohorts relative to the damping effect which cohort strength has on
itself. The values of the interaction parameters, by, represent fixed coefficients
between cohorts, although changes in this parameter may be represented as a
quasi-simulation of habitat modification, or perhaps population genetic changes
(Larkin, 1963). Equation (4) has competition in a form reminiscent of the
Lotka-Volterra family of equations. The effect of competition is now expressed
through the mean weight equation. Note that no provision has been allowed for
interspecific competition, a condition which may have importance in the
analysis of tropical reef fish ecology and tropical multispecies fisheries.
However the intraspecific competition feature can be accomplished by adding an
averaged term, - XIC; (1), with the brackets to account for the j-cohort,
k-species interactions. Note that a basal metabolic costs term has been added
which increases the equation’s ability to model known physiological
mechanisims and addresses the growing acceptance that physiological processes
play important roles in regulating fish growth, survivorship, and recruitment
{Hoar et al., 1979, 1983; Caddy & Sharp, 1986).

We now endeavor to develop a fairly simple population balance equation
such that population growth can be represented as the outcome of the gains from
births and/or recruitments which are offset by losses from all sources of
mortality

N, =R, -ZN, ©

Equation (6) varies from standard fishery representation of the change in
cohort abundance with respect to0 time because of the added recruitment term.
The recruitment term allows communication between adjacent cohort population
regions, as well as additions that may flow between strata to strata in terms of
either births and/or immigration or emigration. The mortality term is also
structured into an alternative form with endogenous and exogenous population
forcing components, i.e.:

Z, = MW W)+E @)

M; = instantancous natural montality for the cohort in lifestage i
(here assumed time constant, i.e. M = M)
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W= =  optimal weight (biomass) for an individual of the i cohort.

= fishing and/or predatory pressure for the cohort in lifestage i.
A tradeoff here may be seen: whereas bigger fish at a given
age may be less susceptible to natural mortality or predation,
they are more susceptible to fishing predation.

R; = instantaneous rate of recruitment from j® to the i™ lifestage
cell, which in the case for recruitment to the initial age
becomes,

Ri_o= i (g £ (\vj‘wj”)) ®)

=1 =1

withf; =  fecundity of the jh age (size) class.

Fecundity per unit of parental biomass may be highly variable and
dependent upon the nutritional state and size structure of the stock {(Parrish ef
al., 1986). This would imply that the ensemble weight of a specific j® cohort
may be suboptimal which would allow for dependency of age-specific
reproductive input on the density-dependent factors which influence growth. If
weight is suboptimal then the average cohort reproductive value will decrease,
while on the other hand if weight is supraoptimal, then the reproductive value of
a cohort will increase accordingly. The question of recruitment to the adukt
popalation should properly be dealt with by writing down balance equations
analogous to (6) for the populations of all the various stages in the life history of
the species concerned.

N; = ﬁij - M (Wm-Wp +F) N ®

The natural mortality then reflects the degree of metabolic stress the
poputation undergoes reflecting endogenous constraints and provides coupling
back to the mean weight equation. The biological mechanism for the
density-dependent inter-age mortality could be viewed as competition for food
and space in which young cannot compete favorably with clder members of the
population (Boisford & Wickham, 1979). The recruitment term provides the
interrelation between age (size) groups. Equation (9) as written then allows for
partial selection and partial recruitmeni, which includes density — and
time-dependency. Rearranging the population derivative (9) in terms of
age-specific ensemble weight:
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W=We+ L [F+Ll O - R ] (10)
M, N,

Solving (9) for the ensemble weight at age, taking the derivative with
respect to time and calling M; time and age constant and expressing everything
else a function of time leads to:

W. =1 [i:i+

1 {®-Ry-Nav-Rp} ] an
M N, N.

13
substituting (10) into equation (4):

W, = (W +d [Fi+.1% NRp-F]) [K-N-BN] VK,
M .

o (Wim+L [F+1 N -RpD]) 12)
M N,
and substituting for the derivative of weight (11) into (12) the full equation is:

W =1 [+ 1 [{@-R)-N-Rp } ]
M N, N,

= {ri(wim"hld-[Fi"'lﬁ(ﬁi Ry -BDIK; - N; - BN}/

- 0 (wi “+1 [Fi"'}__(ﬁi 'Rij)]) (13)
M N,

and with some reorganization now let the forcing term, F, be represented as:

F= 1[E{n(-BNK)-o }+@R/K)-F]

M

+We [ (1-BNK) ) - o] (14)
Terms will be by definition independent of N;, but contain forcing by the

deterministic parameters and the specific densities of the competing N; cohorts.
Then the j-dimensional differential equation is written as:
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F= K (I/MN)

+ ], [aMN{ RN - (YN) + 1, (BN/K) - 1) + o} + /MK ]

+N; [ @/K;) {Wi”"'Fi,M } ]

N [R; { 1 (1- BN/K) - o } - Ry] (15)
Substituting for the constant terms within age strata and replacing B, by (5) and
K| by r/a, then:

A= 1M

Ay=1, (1-BN/K)) - g =1;- ToyN;- 0

Ag=_1 =3;
MK, M
Ag=r [Wr+E]=a [Wr+F]
K, M M
A =Ry (Ay) - Ry
A; =Ry

With substitution of the intra-strata constants and some rearrangement of (15):

F = Iﬁ.(ﬁ)
N.

+R (AN [ Ay - N AT+ A) + N A+ (AYN) (A9
N. (16)

and further recognizing that (16) is in the general form of the 2™ order nonlinear
differential equation:

F= N +BN@N+N)+BN an
equation (17) can be recast as a second-order differential equation for a specific

ensemble individual i as:
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N =N + K, (A - (AJADN) - (R/NDA, - N2 (AJA,) + N, A A

Solution Schemes

As written above, the coefficients T, K,,..., etc., are all functions of the age
of an organism. Therefore, if we choose the index i to follow the year class of
the organism, the problem becomes a fairly complicated time integration for
each year class. This can be viewed as a close parallel to the Lagrangian
problem of following the evolution of a particle’s momentum in fluid dynamics
given the forcing as a function of space-time. Although the analog is not exact,
like the momentum equation for fluid flows, it is a simpler task to consider the
evolution at a fixed point in “age” space. In the Latter case the coefficients are
fixed and the problem can be solved as single levels in age given the history of
the other age classes. This can be done in three models:

1. A locally approximate solution given the N;’s from a “reasonable”
selection of the overall solution space and then solve for a given Ni; or...

2. Specify the coefficients for all age classes and then iniegrate the entire set
using an interactive approach; or..

3. Linearize and abstract the system (Schaffer, 1981).

Numerical Analysis Technigue

For most continuous models analytic solutions are not possible; this is
particularly true for highly complex sets of nonlinear cquations. However,
numerical analysis techniques are used to integrate the differential equations
numerically, given specific values for the state variables at time zero (Carnahan
and Wilkes, 1973). The evolutions must nommally be modeled by nonlinear
equations for which closed-form solutions are unobtainable. They may be
readily integrated by computer algorithms, so that the response from given
starting boundary conditions can be easily established. For any time step, 5
(t+A1), we desire to calculate the populations trajectory for any cell i in region j:

Ni'(t+AD =N + {N (19)

Once we calculate the N;’s, we use the specific values to compute the vector
of the ensemble weights, W,, such that we can calculate specific ensemble
abundances, which can then be computed directly in terms of density. The
approach chosen to integrate the continuous second order nonlincar system of
coupled equations was by rewriting specific dynamic difference equations for
the numerical simulations. A numerical running scheme was designed to
conduct the analysis and its development is outlined below:
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Numerical Running Scheme

Two classes of processes motivate the numerical simulation approach. One
process, moving the coupled system forward in time using the single time-step
approach averages the particles position forward as a point between the present
and the next time step. This system of equations can be unstable, pasticularly
when complex second-order and higher equations are used. As a result, forward
simulations are used to generate a vector of initial state values, given boundary
conditions for the system. The vector of initial state values are then passed 1o the
second process, a centered system of equations which averages the particles
position over three time steps. Centered systems are intrinsically more stable in
the evolution of time.

The Forward in Time System

Given boundary conditions for a series of state values, the initial
populations state vector utilizing the state equations are generated in numerical
simulation by the following system of forward difference equations:

Let the second-order forward difference be generally represented by:

N = Nt + A) - N(©) (20)
At
and the first-order forward difference;

N(t) = N(t + A1) - N(©) @21
At

Then substituting the properly time-stepped equations (21} into (20) leads to
the dynamic forward second difference equation:

Nt = N(t + 2A0) - 2N(t + AD + N(©)
AL (22)

N(t + 2A1) = N(f) A2+ 2N(t+ A1) - N(©) (23)

The form of the general second-order nonlinear differential equation can be
rearranged to the second-order forward difference:

N = F-B,N® (a+Nw®) - B,N® 24)
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Substituting equation (24) into equation (23) gives:

Nt + 240 = APF - A2B N (a + N@®) - AZB,N(t) + 2N(t+A1) - N©®
(25)

Now substituting for the first-order forward difference term on the
right-hand side of equation (25), results in the dynamic forward difference
solution for simulation of the general form of the second-order nonlinear
differential equations:

N(t+2A) = APF- AB, [N(t+AD - N (2+ N )
- AZB,N(1) + 2N(t +At) - N(t) (26)

Equation (26) and its variants can generate the initial population state vector
utilizing the state equations, but due to the inherently unstable properties of (26)
in time evolution we now need to develop the centered relationships.

The Centered in Time System

Given the initial population state vector utilizing the state equations cast as
& forward difference we now desire to compute the population state vector
centered with respect to evolution in time, which are generally calculated as
follows. Let the second-order centered difference be generally represented as:

N = Nt + AD - N(t + AD
2At QD

and the first-order centered difference:

N(t) = N(t + At) - N(t - Ap)
2AL (28)

Substituting the appropriate representation of equation (28) into (27) leads
to the general form of the dynamic centered second-order difference equation:

Nty = N(t - 2A0) - 2N(O) + Nt + 241)
4A12 (29)

and
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N(t + 2A0) = N(O4AL + 2N(t) - N(1 - 2A0) (30)

If we now proceed similarly to the fashion we did in the previous section by
substituting equation (24) into equation (30) we get:

Na+240=  4A2F - 4AvB,N@) (a + N@)
- 4AEB,N() + 2N(1) - N(1 - 2A0) C3))

With substitution of (28) into the right-hand side of (31) we obtain the
dynamic centered difference solution for simulation of the general form of
second-order nonlinear differential equations:

NGt +2a) = 4A¢F - 248, [N@+AD - Nt -A0](a + N(©)
- 4AEZB,N(1) - 2N(t) -N(t - 2A1) (32)

Equation (32) allows centered time evolution of the second-order state
equations: To compule each specific N(t+1) you require N(1), N(t-1), N(1-2), and
N(1-3), vis a vis, four previous population cobort time-step values.

The Multicohort Numerical Simulation System of Equations

As evidenced by the development of the forward and centered systems of
equations in the two previous sections we are now in a position (0 specifically
write down the non-general coupled system of second-order nonlinear
population density/abundance equations for multicohort-multispecies systems
with age structure.

Recasting (17) as a second-order dynamical differential equation we have:

N =N® (F) - N©) (A7) + B2 + N© (A; -AIND) - NOP(AY) - Ag
A, NO N(®) A, A, (33)

Building upon the arguments presented above, (33) can be written as a
forward difference equation:

N(t+241) = AN - A2N© (A;) + APN©? (1)
A, N N

+APN(D(A, - (APND)- AENOHAg) -ACA+2N(H+AL - N(D)
A, Ay (34
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Thus, with the appropriate substitutions of equation (21) into the right-hand
side of equation (34), the forward in time e¢volution simulations for each specific
cohort can be calculated by:

N(t+ 240 = ACNEXE) - At(N@+ Ary - Nw)A) +(Ne+ 40 -NO 2 (1)

A, N(t) N
+At (Nt + At - NOD)(A, - (A N()) - N(HHAAR)
A, A,
-AZAL+2N(L+AD -N@©®  Vj (35)

Clearly, the potential instabilities associated with an equation as complex as
(335) which contains several squared first-order terms, in addition to its intrinsic
second-order form, required development of the centered form of the set of
coupled second-order nonlinear equations. Again, recalling the arguments
presenied above, equation (33) can now be transformed into a second-order
nonlinear centered dynamical difference equation:

Nt +2A1) = 4ANW(D) - 482K (A,) + 482N@? (1 )
A, NG N@®

+ 4&21:1(:)(4‘\3 - (A&)N(t)) - 4APN(DX(AS) - 4A2A (+2N(D) - N(t -2A0)
A, A, (36)
With the appropriate substitutions of equation (28) into the right-hand side

of equation (36) the centered equations with respect to time for the simulated
time evolutions for each specific cobort can be calculated as:

N(t + 240 = 4AN(KE) - 246Nt - A0 - Nt - AD)(Ay)
A, N(®

+ (N@+ At - N(t- A0)(_1 )
N

+ 24t (NGt + A - N(t- AD) (A, - (A N(»)
A2

258



Gulf and Caribbean Fisheries Institute

- 4AZN(DXA) - 4AP°A + 2NW - Nt 280 V) (37)
Ay

The reader should note that there is one centered difference equation like
(37) for each j** cohort in the multicohort population (j+1,...n). Thus the coupled
system of multicohort equations consists of a centered vector of state equations,
one equation for each cohort.

Simulation of Second Order Nonlinear Differential Equations

Clearly there remains a requirement for gaining insight into what can
transpire in the evolution of a fishery system, and in the possible ways the
system can be influenced by the set of initial conditions and ensuing levels of
perturbations introduced over time. To understand the dynamical behavior of the
coupled equation system specified, simulations were conducied 10 examine
regions of stability or instability. The simulation system was set with appropriate
parameters for depiction of an engrauloid life history (Table 1 and 2). Up to
seven cohorts were followed in time evolution; however, the number could have
arbitrarily been n-dimensional.

Simulation resulis here demonstrated classic limit cycles similar to those
produced by the Lotka-Vollerra family of equations which are referenced
extensively in the nonlinear dynamics literature (Garrido, 1983; Webb, 1985;
Thompson & Stewart, 1986; Briggs, 1987, Grebogi ef al.,, 1987). Limit cycles
were pronounced when an approximate form of equation (3) was simulated
utilizing an insignificant metabolic costs term. For a given parameterization, the
cohorts increased in abundance and biomass relative to the magniwde of their
intrinsic growth term. Dampening was introduced through density-dependence
and was exacerbated by the interactions of local cohorts, and the overall
population ceiling established by the carrying capacity of the cohort (Figure 2).
In all cases, the population approached long term equilibrium states; but then
experienced accelerating oscillations which finally settled into stable limit
cycles where the population(s) oscillated regularly between capacity and zero
states (Figure 2a). This condition was as characteristic of two cohorts as it was
of five or more cohorts (Figure 2b).

Several interesting features were exemplified by the stabie sets of second
order coupled nonlinear equations when they were modeled as a problem of
Lagrangian dynamics. First, appropriate control of the metabolic costs term
induced the equivalent of the standard fishery exponential population mortality
curves. No allowance was made in the time domain for recruit leakage from
outside the cohort cell (Figure 3a). The general condition is intuitively appealing
to the traditional oriented fishery demographer because of it’s semblance to the
familiar frame of reference. Second, when recruitment communication between
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Table 1. Engrauleid annual rate parameters used in the continuous simulations
of the second order nontinear muliicohont population model. Data from Tillman &
Stadelman (1976), Hunter & Goldberg (1980), Hunter & Leong (1981), Parrish et
al. (1986), and Caddy & Sharp (1986).

]
Cohort (i) ali) mii) w(i) () ofi)
[ 1.023 .0003500 1.1 11.81 1.00 0.077
fl 1.012 0007500 1.1 18.41 1.93 0.088
IH 1.001 0003913 1.1 24.50 293 0.099
v 0.990 0004444 1.1 29.68 3.88 0.110
v 0.985 0004667 1.1 33.86 4.72 0.116
Vi 0.979 .0005455 1.1 37.14 5.42 0.121
Vil 0.974 0006250 1.1 39.46 598 0.127

Table 2. Matrix of interaction coefficients b(jj). Rows are the cohorts affected
while the columns are the cohorts who are causing the interaction.

EFFECTS

1 2 3 4 5 6 7
1 XXX .00025  .000005 .000001 .000001 .00GO001 1.0E-8
2 .000125 XXX 000125 .000125 .0000125 1.0E-6 1.0E-7
3 .000225 .00035 XXX 000125 .000025 1.0E-5 1.0E-6
4 .000 .00001 _001 XXX 0001 .00005 1.0E-7
5 .000 .001 .0 .001 XXX .00001 1.0E-5
6 .000 .00000  .00001 .0001 0005 XXX 1.0E-4
7 .000 .00000 .00001 .0001 .0002 00001 XXX

cohorts occurs both in the rj term, and pulsed with respect to the R(ij) term,
there is a shifting of dominance between cohorts in time evolution (Figure 3b).
These “moving” cohorts are fully dynamic and can be affected locally by:

L. their ability to capture available environmental resources,

2. cohort carrying capacities,

3. competition between other cohorts,

4. population densities within and among age strata,

5. age-specific continuous recruitments from the local population and

6. potential recruitments from sources extrinsic to the local population
which are typical for many tropical fishery systems.

Third, older age groups may damp recruitments because of their predatory
effect on the younger age strata. Numerically strong population age strata can
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(A) Multicohort Populatlon Equations
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Figure 2. Time evolution of the nonlinear multicohort population equations
showing limit cycles for: (A) two cohorts, and (B} five cohorts.
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Figure 3. Time evolution of the nonlinear population equations showing: (A) a
large metabolic term and no recruitment communication between age strata, and
(B. C, D) temporal communication between cohorts.
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completely dominate or cause catastrophic collapse of other age strata for
specific ranges of time evolution (Figure 3 c, d). Non-equilibrium population
dynamics are prevalent. Numerically strong cohort classes can completely
dominate other age strata if the competition between the groups is intense
enough. Thus, the parochial fishery manager attitude that a strong year class or
cohort is productive for the fishery may be only marginally true from a current
period yield perspective, but is completely inaccurate and fatwous when the
effect of this strong cohort is to damp out other local cohorts as it passes through
the fishery, negatively impacting the reproductive ability of the population to
support itself. Subsequent cohorts are damped by a big cohort. The system is a
complicated one with swilching between states. Strong competition between
cohorts can cause the ensemble weight at age to fluctuate significantly through
time (Figure 4¢). Exploitation reduces competition by decreasing specific cohort
abundances, and further serves to stabilize the competition induced effects by
increasing the ensemble weight per individual and the fecundity per age-specific
unit of biomass. These findings contrast with Parrish ef al.’s (1986) conclusions
which state that the reduction in age composition caused by heavy exploitation
will greatly reduce the average fecundity per unit of biomass. Increased numbers
of cohorts caused the total biomass to remain relatively stable and suggest a
rationale for continuous cohort production in tropical regions.

The requirement for any fishery development or management program is to
develop information as to what portion of the biomass is available for
exploitation, and to allow a level of exploitation such that the population is
steady-state or increasing. Utlizing the coupled set of equations developed here
and a small enough parameter space il may be possible to develop an
understanding where bifurcations and catastrophes exist. A population with the
kinds of interaction terms addressed bere when evaluated cohort by cohort
appears as a bumpy ride. Looking at the aggregate population biomass (i.e., total
biomass when you sum across cohorts) gives the appearance of being
significantly more damped than the individual cohorts. Formally some
equilibrium may exist; however, pushing up and down on the system produces
oscillations which indicate an unstable equilibrium. In dissipative systems where
no interactions between cohorts exists you obtain the stable equilibrivin as
suggested by the traditional models discussed clsewhere (Ault, 1988; Ault &
Fox, 1988a, 1988b, 1989). No matter what the initial distribution, without
nonlinearities the population will contract to a fixed stationary distribution.
However, apparenily stochastic dynamics arise from simple and rigidly
determinisiic density-dependent mechanisms. This suggests that apparently
chaotic dynamics may be ubiquitous, and that they can arise more readily in
systems of higher dimensionality. The complicated behavior of simple
deterministic models can have disturbing implications for the analysis and
interpretation of biological data. Implications for ecological and fishery theory
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Figure 4a. Simulated population cohort abundanca {A) and associated ensemble
weights (B) modeled by equations (35) and (37) for cases where the optimal
weights at age strata are identical.
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optimal weights increase with increasing age.
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weights (B) modeled by equations (35) and (37) for cases where optimal weights
increase with increasing age and increased interaction between cohorts.
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of high-order period and aperiodic orbits are most unseitling (May & Oster,
1976). Many systems have shown a tendency to shift from many species to a
few with increased exploitation over time. The limit cycles viewed in the
Poincare sections here suggest that the cycles exist because of the interactions
(Figure 5). The limit cycles shown by the present sysiem of equations also
suggests that the system has an unstable equilibrivm, and that possibly
bifurcations exist. In other words, the traditional assumptions regarding
stable-point equilibrivm point may be unrealistic, and formal equilibrinm does
not exist. Causes of cyclical fluctuations are of considerable theoretical interest
(Boisford & Wickbam, 1979), and when the species concerned are of economic
importance they are of practical value as well. Knowledge of the specific
mechanism causing cyclical fluctuations is necessary in formulation of effective
fishery policy.

The coupled nonlinear differential equations presented herein can provide
important rare insights into the study of realistic population dynamics and can
assist determination of the effects of competition in harvested tropical
multicohort - multispecies systems. The multicohort model made some of the
simplest assumptions for the complex processes that tropical multispecies
populations undergo. However, while the attempt was to model the system more
appropriately, the assumptions utilized are clearly an extension of traditional
methods which are consistent, justifiable and follow thermodynamic laws. The
model was developed in an attempt to ask relevant questions of the parameters.
Clearly this approach can not be any less robust than the state of the present
traditional models when applied to the tropical domain.

Future Scope of the Multicohort - Multispecies Model

While the analysis is not complete, the purpose has been to describe the
multicohort nonlinear dynamic system modeling as a technique to study tropical
marine fish stock(s) population dynamics processes. The unique feature of the
equations presented in this section is that it represents the first time anyone has
coupled an n-cohort, n-species relation and solved the system of equations.
Beyond its intrinsic mathematical interest, it may have considerable significance
for advancing the study and understanding of structured populations under
exploitation. The model may be considered as depicting respectively the mode
of action of (i) density-independent, and (ii} density-dependent factors.
Accepting these paraliels, the model may demonstrate some widely discussed
properties of population regulation mechanics. Models as complex as that
presented here are generally not used in fishery analysis because the amount of
data needed to completely specify a complex model of a specific population is
seldom available for a real fishery. Nonetheless, the intent was to expose aspects
of population behavior that may otherwise be occluded by the simplifications
inherent in many traditional fishery models. Recognition that density-dependent
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Figure 5. Domains of attraction for the phase-space trajectories showing a
spectrum of limit cycles for various initial conditions and continuous recruitment:
(A) system approaching a dynamic limit cycie, (B) increasing optimal weights at
age increasing age strata, (C) conditions in (B} with low fishing montality, (D-E)
conditions in (B) with moderate growth term, and (F) large growth term.
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Figure 5. continued.
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mechanisms can produce cyclical and sometime chaotic behavior in fish
populations does have important implications for the way that certain kinds of
data are analyzed. Not even in the most exact of the physical sciences are the
coefficients of any model every known with absolute precision. As such, the
mode! of this section may then suggest a new tact for stratcgies based on current
data, or new kinds of data that may be of paramount importance © truty resolve
tropical multicohort-multispecies dynamics. Clearly, the model will provide
more accurate views and predictions of system behavior as real data become
available. Data specific to a particular system will be necessary to provide a
more cogent understanding of the underlying nature and behavior of the system.

Multiple equilibria and strange attractor states appear to become prevalent
features of biological systems when interactions such as competition and
density-dependencies are explicily modeled (May 1981; 1987). A logical
extension of the multicohort model would be: (i) to work out a principal
components analysis that would estimate the most likely position of the system
subjected to perturbations, (ii) to develop exact probabilities of system outcomes
by performing a sensitivity analysis to parameter scalings and coatrolled
perturbations in the deterministic model, and (iii) extend these to a Markov
model for predicting behavior of the multicohort - multispecies system. In
conclusion, the present formulation of intraspecific competition, together with
an expanded version which incorporates interspecific competition, should be
applied to a laboratory and/or a natwral situation to test its usefulness for
prediction. This approach may indicate the framework necessary for moving
expert systems for fishery management from diagnostic analysis to optimal
decision making.
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