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ABSTRACT 
Herbivorous fishes control the algal dynamic on coral reefs and are widely exploited by Caribbean fisheries. Among this guild, 

acanthurids are routinely seen in multi-specific foraging groups and are globally considered as a homogenous functional group. In 
fact, the different species can display various dietary patterns. In this study, we stated the hypothesis that the formation of such multi

-specific groups can be explained by a difference of trophic niche among the acanthurid species. To investigate this fact, a study was 
conducted on three species of Acanthuridae (Acanthurus coeruleus, A. chirurgus and A. bahianus), common on the reefs of 

Guadeloupe. Stomach content analyses were coupled with stable isotope analyses (13C/12C and 15N/14N ratios) to determine their 

trophic niches. Contributions of sources in fish diet were estimated using a mixing model. Among the three species, A. coeruleus 
showed the most diversified diet and was the only species to ingest benthic invertebrates. Food items were assimilated proportional-

ly to the quantity ingested. A. chirurgus ingested an important amount of calcareous macroalgae that was not assimilated proportion-

ally to the quantity ingested. Finally, A. bahianus presented an important amount of unidentified matter in its stomach contents and 
assimilated a high proportion of fleshy macroalgae. These three acanthurids could then coexist in the same foraging group because 

they ingest and assimilate the food items in different proportions, avoiding competitive interactions for food resources. 
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INTRODUCTION 

On coral reefs, surgeonfishes (Acanthuridae) represent a common and abundant family of herbivorous fishes. They play 

a major ecological role on the dynamics of benthic communities (Bellwood and Choat 1990, Mumby et al. 2006) and are 

commonly exploited by Caribbean fisheries (Polunin and Robert 1993). Compared to other tropical regions, the diversity of 

herbivorous species is relatively low in the Caribbean. Among 38 species of Acanthuridae (Froese and Pauly 2012), only 

three species are found in the Caribbean: Acanthurus coeruleus (Bloch and Schneider, 1801), A. bahianus (Castelnau, 1855) 

and A. chirurgus (Bloch, 1787). These three species are routinely observed in multi-species foraging associations 

(Robertson et al. 1976), defined as “multi-species shoaling association” by Lukoschek and McCormick (2000). 

Most studies on multi-species associations or single species fish shoal are focused on the benefits of this feeding 

strategy that are principally based on two axes: foraging benefits and predator avoidance (Barlow 1974, Morse 1977, Ogden 

and Lobel 1978, Pitcher et al. 1982, Lukoschek and McCormick 2000). Group feeding can increase individual’s ability to 

catch otherwise unobtainable prey. For example, fish shoals permit the access to defended algal resources of territorial 

herbivores, like damselfishes, that are not available to individuals (Barlow 1974, Robertson et al. 1979, Foster 1985, 

Reinthal and Lewis 1986). Foraging in groups may also facilitate earlier detection of predators. Alarmed conspecifics 

trigger a chance in behaviour of other group members to increase vigilance. Fish interpret conspecific feeding as a sign that 

it is safe to feed, thus spend more time feeding and less maintaining antipredator vigilance (Maguran and Pitcher 1983). 

In ecology, the coexistence of several species in a same foraging group raises the question of the resources use by the 

different species. Feeding behaviours can be described by the definition of the “trophic niche” of each fish species (Elton 

1927). As the three fish species share the same environment on reefs, the description of their trophic niche may be important 

to understand how they coexist without competitive interactions. The trophic niche can be described by digestive contents 

analyses (Randall 1967, Tilghman et al. 2001, Ferreira and Gonçalves 2006) or direct observations of feeding behaviours on 

the field, by the counting of “bites” (Francini-Filho et al. 2010, Kopp et al. 2010). However, even if field observations give 

important information on feeding behaviours, an accurate description of the diet is not allowed by this method. To the 

contrary, digestive contents analyses identify and quantify the ingested food items with more certainty but present several 

practical problems (Bearhop et al. 2004). The principal difficulty lies in the ability of herbivorous fishes to triturate and 

grind their food, due to the adaptation of their digestive anatomy. Indeed, surgeonfishes can have a thick-walled, gizzard-

like stomach with an important musculature that allows them to triturate the ingested matter (Ogden and Lobel 1978).  
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More recently, stable isotope analyses have been 

proposed to reflect the feeding behaviours of individuals 

over long periods, corresponding to the period during 

which the tissues of consumers are synthetized (Bearhop et 

al. 2004). Thus, it has been argued that niche axes may be 

determined using stable isotope ratios (Bearhop et al. 2004) 

and have been formalized in the concept of the “isotopic 

niche” (Newsome et al. 2007) according to the fact that 

values measured in consumer tissues are linked to those of 

their diet with a constant enrichment at each trophic level 

(Minagawa and Wada 1984). Although isotopic niche is 

likely to be tightly correlated to the trophic niche, these are 

not the same and should not be confused (Jackson et al. 

2011). Over the last two decades, a number of isotope 

mixing models have been proposed to identify the relative 

contributions of food resources to a consumer’s diet 

(Layman et al. 2012). In this study, we used a concentra-

tion-dependant mixing model because of the presence of 

animal and vegetal items in diets (Phillips and Koch 2002). 

This model, performed with Stable Isotope Analysis with R 

(SIAR), is based on a series of related linear equations that 

utilize Bayesian statistics technics to identify proportional 

contributions of sources pools (Parnell et al. 2010). 

Thus, while digestive contents gave a snapshot of the 

diet, stable isotope analyses draw the isotopic niche of an 

organism and give information on the long-term assimila-

tions of sources. Coupling these two methods provides a 

powerful tool to determine the trophic niche of fish species. 

To our knowledge, these two approaches have never been 

used to describe specific trophic niche among acanthurids. 

The principal aim of this study was to determine and 

compare the trophic niche of Acanthurus coeruleus, A. 

bahianus and A. chirurgus. To do so, we stated the 

hypothesis that the coexistence of acanthurids fishes in 

same multi-species foraging associations can be explained 

by a difference of trophic niche among the three species. 

 

MATERIAL AND METHODS 

 

Study Site and Field Samplings 
This study was carried out in Guadeloupe, Lesser 

Antilles (16°30’N; 61°30’W). The studied site was located 

on the leeward side of the island and represented a surface 

of approximately 500 m x 100 m approximately (Figure 1). 

Maximum depth was 15 meters. The substratum was 

composed of rocky blocks colonized by a non reef-building 

coral community dominated by Montastraea annularis 

(Ellis and Solander, 1786) and M. faveolata coral species 

(Ellis amd Solander, 1786). 

Samples were collected along the studied site between 

September and November 2010. In this study, ten individu-

als of the three species of surgeonfishes were collected: 

Acanthurus coeruleus, A. bahianus and A. chirurgus (Table 

1). Fish were immediately placed in an icebox to stop 

enzymatic activities and preserve gut and stomach 

contents. Mature erect macroalgae, called “macroalgae” in 

this study, were hand collected and preserved in a close 

box. On the studied site, six species of macroalgae were 

collected: Dictyota cf pulchella (Hörnig and Schnetter, 

1988), Acanthophora spicifera (Vahl, Børgesen 1910), 

Tricleocarpa fragilis (L.), Huisman and Townsend, 1993), 

Amphiroa fragilissima (L.), Lamouroux, 1816), Udotea 

flabellum (Ellis and Solander, Howe, 1904) and Ventricar-

ia ventricosa (Agardh), Olsen and West 1988). In addition, 

five replicates of algal turf, defined as a multi-specific 

assemblage of algae at a juvenile stage, mixed with small 

size species (Carpenter 1986, Hay 1981), were scraped and 

collected with an air sucker connected to a 500 µm meshed 

collector bag. This method allowed us to sort benthic 

invertebrates from turf samples and to keep them as a 

potential food source.  

Figure 1. Location of Guadeloupe Island, in the Caribbean 
region and location of the studied area in Guadeloupe. 
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Digestive Content Analysis 

At the laboratory, total length of fish (LT) was 

measured to the nearest mm. Wet body mass (M) was also 

measured to the nearest g. All individuals were speared at a 

maturity size (Table 1) (Froese and Pauly 2012). Fish were 

dissected, and stomachs were placed in a formaldehyde 

solution until analysis. Diets were determined by the 

method of point-intercept, originally described by Jones 

(1968). Stomach contents were spread in a Petri dish and 

placed under a stereomicroscope. Ten points on each Petri 

dish were randomly chosen and photographed (10x 

magnification). A grid was superimposed to the digitized 

photographs, and the nature of food items found under each 

point-intercept was recorded (Jones 1968). By this method, 

1,000 points were reported per individual or 10,000 points 

per fish species. The results were then expressed as 

percentage of each food category ingested. 

 

Stable Isotope Analysis 
A small piece of the dorsal white muscle was cut on 

seven individuals of each fish species. Each sample of algal 

turf was sorted under a binocular microscope to exclude all 

benthic invertebrates that were preserved independently as 

a potential food source. The thallus of macroalgae was 

cleaned and scraped to collect detritus, principally 

constituted by detrital organic deposits and bacteria 

(Crossman et al. 2001). All samples were cut into small 

pieces and oven dried at 50°C to a constant weight, before 

being ground into an homogenous fine powder. Carbon and 

nitrogen stable isotope ratios of fish muscles and sources 

were determined on the same sample. Analyses were 

performed on two subsamples for food sources that might 

contain carbonates: calcified macroalgae, algal turf, 

detritus and invertebrates. For δ13C, a subsample was 

acidified drop by drop with 1N HCl to remove calcified 

material that presents a less negative δ13C than organic 

material (De Niro and Epstein 1978). For δ15N, a non-

acidified subsample was used, as acidification can modify 

δ15N (Pinnegar and Polunin 1999). Nitrogen and carbon 

isotope ratios were determined by a continuous flow mass 

spectrometer (Thermo Fisher™, delta V Advantage). 

Elemental concentrations of carbon and nitrogen ([C]% 

and [N]%) were measured with an elementary analyser 

(Thermo Fisher™, Flash EA 1112). Isotopic ratios were 

expressed in standard delta notation (δ values (‰)) 

according to the following formula: δ = (Rsample/Rstandard – 1) 

x 1000, where R is the ratio of the heavy to light isotope 

(i.e. 15N:14N or 13C:12C), Rsample is measured for fish and 

sources and Rstandard is an international standard (Vienna 

Pee Dee belemnite limestone carbonate for carbon and 

atmospheric air for nitrogen). 

The Bayesian mixing model SIAR v4.0 (Stable 

Isotope Analysis in R) developed by Parnell et al. (2010) 

was used to estimate the proportional contribution of food 

sources to the diet of fish species. As the elemental 

concentrations varied substantially among sources, the 

mixing model incorporated concentration dependence as 

recommended by Phillips and Koch (2002). This model 

deals with unequal assimilation of carbon and nitrogen, and 

assumes that for each element, the contribution of a source 

is proportional to the assimilated biomass times the 

elemental concentrations in that source. Three models were 

run according to each fish species. In each model, we 

entered the mean carbon and nitrogen signatures (± CI) of 

food sources and mean signatures of fish muscles, the 

mean elemental concentrations (± CI) of the sources ([C]% 

and [N]%) and carbon and nitrogen fractionation factors 

(Δ13C and Δ15N). Fractionation factors were calculated 

with the algorithm described by Caut et al. (2009) and the 

same Δ13C and Δ15N were used for the three mixing 

models. We fixed mean enrichments (± S.D.) of 1.5 ± 

0.2‰ for the carbon and 4.5 ± 0.1‰ for the nitrogen, 

according to the data calculated with the algorithm (Caut et 

al. 2009) and the data given in the previous literature on 

herbivorous fishes (Sweeting et al. 2007, Mill et al. 2007, 

Wyatt et al. 2010). 

 

Statistical Analysis 
Data were tested for normality with the Shapiro-Wilks 

test and for homogeneity of variance with Levene’s test. 

When all these assumptions were verified, we used 

analyses of variance (MANOVA and ANOVA) to compare 

the proportions of food items between fish species, and 

isotopic carbon and nitrogen signatures between food 

sources. Analyses of variance were combined with Tukey’s 

honestly significant difference (HSD) post hoc tests to 

perform multiple comparisons. As data were not normal for 

fish muscles, isotopic signatures were compared with a 

Kruskal-Wallis test. Contributions of sources to fish diet 

(calculated with mixing models) have been compared 

between fish species with a Chi-square test. A redundancy 

analysis (RDA) was used to relate the proportions of 

sources that were assimilated by fish (calculated with 

mixing models) and the proportions of source that were 

ingested by fish (measured with stomach content analysis). 

RDA is a constrained ordination analysis and represents 

multivariate data in a reduced number of axes of the 

greatest variability (Legendre and Anderson 1999). The 

variables that contributed most to explain the variation in 

the dependent variables were selected using a forward 

selection procedure available in CANOCO program (ter 

Table 1. Studied fish species, mean total length TL in cm (range) and mean wet body mass M in g (range) of fish. nDIET is the 

number of samples used for stomach contents analysis and nISO is the number of sample used for isotopic analysis. 

Fish species nDIET nISO TL (cm) M (g) 

Acanthurus bahianus 10 7 17.4 (17−19) 107 (90−145) 
Acanthurus coeruleus 10 7 22.0 (19−26) 234 (167−289) 
Acanthurus chirurgus 10 7 19.0 (16−23) 148 (99−231) 
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Braak 1989). All statistical analyses were performed using 

the program R version 12.2, excepted for RDA, which 

were performed with CANOCO program (ter Braak 1989). 

  

RESULTS 

 

Stomach Content Analysis 

Five categories of items were identified in stomach 

content: calcified algae, algal turf, fleshy macroalgae, 

benthic invertebrates and sediment (Figure 2). A large 

amount of unidentified material was observed in the 

digestive contents but was not regarded as a full-fledged 

type of source because of its uncertain origin. Unidentified 

material could represent ingested detritus, or result in the 

digestion on the other ingested sources as algae. Ingestion 

of sediment had been considered as incidental ingestion 

and resulting from the type of feeding. The proportions of 

ingested items were significantly different between the 

three fish species (MANOVA, Wilks’ lambda = 0.002, 

F2,23 = 23.8, p < 0.0001). The mean proportion of fleshy 

macroalgae (± CI) ingested by A. coeruleus represented 

30.2 ± 7.5% of its stomach contents and was significantly 

higher than in the two other fish species (Figure 2, Table 

2). Similarly, A. coeruleus was the only species to ingest 

benthic invertebrates, even if their mean percentage was 

low (6.0 ± 3,2%). The stomach content of A. chirurgus 

showed the highest proportions of calcareous algae and 

sediment (15.0 ± 2.8% and 25.4 ± 2.8 %, respectively) and 

the lowest proportions of algal turf (17.1 ± 2.0 %) among 

the three fish species (Figure 2; Table 2).  

 

Stable Isotope Analysis 

Isotopic signatures of fish muscles and food sources 

were presented as a bi-plot in Figure 3. Among food 

sources, algal turf showed the lowest carbon signatures 

(mean ± CI = -19.0 ± 0.6‰) whereas the macroalgae 

Ventricaria ventricosa presented the highest δ13C (-9.7 ± 

0.04‰). Benthic invertebrates displayed the highest δ15N 

value, with a mean value (± CI) equal to 4.9 ± 1.1‰ and 

the macroalgae Udotea flabellum had the lowest nitrogen 

signatures (-0.6 ± 0.1‰). Carbon and nitrogen signatures 

of food sources were significantly different from each 

other (MANOVA, Wilks’ lambda = 0.004, F9,36 = 60.8, p < 

0.0001). However, multiple comparisons showed that 

Dictyota cf pulchella and Acanthophora spicifera, 

presented similar isotopic signatures of carbon and 

nitrogen (Tukey’s HSD tests, both p > 0.99). Carbon 

signatures of the fish muscles were similar between the 

three species (Kruskal-Wallis, X2 = 2.26, p = 0.32).  

However, a significant difference was found between the 

highest δ15N value, measured in A. coeruleus (6.9 ± 0.9‰) 

and the lowest δ15N value recorded in A. bahianus (5.6 ± 

0.2‰) (Kruskal-Wallis, X2 = 7.9, p = 0.02). 

 

Mixing Models 

To determine the contribution of food sources in the 

diet of each fish species, five potential sources were used 

in mixing models. Due to their close isotopic signatures, 

the two macroalgae species Dictyota cf pulchella and 

Acanthophora spicifera were grouped in a same food 

category, called “fleshy algae”. Tricleocarpa fragilis and 

Amphiroa fragilissima were grouped in a same food 

category “calcified algae”. Algal turf and detritus were 

equally used as potential resource in the three models. 

Benthic invertebrates were only used as potential sources 

for A. coeruleus because no invertebrates were found in the 

digestive contents of the other species. Udotea flabellum 

and Ventricaria ventricosa were excluded from the mixing 

model analyses because of their distant position in the 

diagram (Figure 3) and because these two macroalgae 

species are rarely described as potential food sources for 

herbivorous fishes (Randall 1967, Hay and Fenical 1988). 

The elemental concentrations ([C]% et [N]%) and isotopic 

signatures of sources used in mixing models are presented 

in Table 3. The contributions of food sources to the fish 

diet were significantly different between fish species (Chi-

square test, X2= 50.3, d.f. = 8, p < 0.001; Table 4). 

According to the mean contributions of sources and the 

range of contributions (Bayesian 95% CI), fleshy macroal-

gae were preferentially assimilated by Acanthurus 

bahianus, while A. coeruleus and A. chirurgus, assimilated 

both algal turf and fleshy macroalgae (Table 4). On the 

contrary, detritus and calcified macroalgae showed a large 

range of contributions for the three fish species, indicating 

that acanthurids fishes occasionally assimilated these 

sources. In agreement with the low proportion of inverte-

brates ingested by A. coeruleus, invertebrates were also 

assimilated in a minor proportion by this species (Table 4). 

Figure 2. Proportions of food categories (% of point-
intercept) measured in the stomach contents of Acanthurus 
bahianus, A. chirurgus and A. coeruleus. 
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Table 2. Results of ANOVAs and Tukey’s HSD post hoc tests, comparing the proportions of fleshy and calcified macroal-
gae, algal turf, sediment and invertebrates in the stomach contents of A. coeruleus (Aco), A. chirurgus (Ach) and A. ba-
hianus (Aba). Bold values are significant (p < 0.05). 

  Fleshy algae Calcified algae Algal turf Sediment Invertebrates 
ANOVA F(2.23) = 16.9 F(2.23) = 63.9 F(2.23) = 4.0 F(2.23) = 20.8 F(2.23) = 12.2 

  p < 0.001 p < 0.001 p = 0.03 p < 0.001 p < 0.0001 
Tukey’s tests           

Ach - Aba p  = 0.73 p < 0.001 p = 0.30 p  = 0.002 p = 0.99 

Aco - Aba p < 0.001 p = 0.82 p = 0.53 p = 0.17 p = 0.001 
Aco - Ach p < 0.0001 p < 0.001 p = 0.03 p < 0.0001 p < 0.001 

Figure 3. Mean isotopic signatures (± CI) of carbon (δ13C ‰) and nitrogen (δ15N ‰), measured in fish muscles and food 
sources collected on the reef.  

Table 3. Mean isotopic signatures (± CI) of carbon (δ13C ‰) and nitrogen (δ15N ‰) and mean elemental concentrations (± 

CI) of carbon ([C]%) and nitrogen ([N]%), measured in consumers and food sources and used in mixing models. Fleshy 

macroalgae: Dictyota cf pulchella and Acanthophora spicifera; Calcified macroalgae: Tricleocarpa fragilis and Amphiroa 

fragilissima. n is the number of samples collected on the reef. 

Sample types n δ13C (‰) δ15N (‰) [C]% [N]% 
Food sources           
Detritus 5 -18.2 ± 0.1 2.2 ± 0.1 6.8 ± 0.1 0.8 ± 0.02 
Algal Turf 5 -19.0 ± 0.6 1.7 ± 0.2 7.6 ± 1.0 2.1 ± 0.5 
Fleshy algae 6 -14.7 ± 0.2 1.0 ± 0.2 12.3 ± 3.0 1.9 ± 0.2 
Calcified algae 9 -16.9 ± 0.7 3.4 ± 0.1 21.8 ± 3.6 8.8 ± 0.4 
Invertebrates 5 -15.6 ± 0.4 4.9 ± 1.1 44.5 ± 1.1 7.5 ± 0.4 
Consumers           
A. coeruleus 7 -15.3 ± 0.7 6.9 ± 0.9 45.6 ± 0.8 14.4 ± 0.2 
A. bahianus 7 -14.7 ± 0.9 5.6 ± 0.2 48.5 ± 1.1 14.9 ± 0.5 
A. chirurgus 7 -14.7 ± 1.2 6.2 ± 0.7 45.8 ± 2.0 14.7 ± 0.6 
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Table 4. Mean (Bayesian 95% CI) biomass contributions of food sources to the diet of Acanthurus coeruleus, A. bahianus, 

A. chirurgus estimated with mixing models. 

Fish species Detritus Invertebrate Fleshy algae Calcified algae Algal turf 

A. coeruleus 22.8 (0.0−43.0) 8.0 (0.0−21.6) 22.5 (1.1−40.3) 20.3 (0.0−40.3) 26.4 (1.6−47.1) 

A. bahianus 20.0 (0.0−44.1) − 57.8 (33.3−84.6) 1.2 (0.0−3.7) 21.0 (0.0−44.1) 

A. chirurgus 25.2 (0.0−48.9) − 39.1 (15.2−64.2) 10.1 (0.0−29.5) 25.6 (0.2−47.9) 

Relation Between Ingestion and Assimilation of 

Sources 

A redundancy analysis (RDA) was performed to relate 

the proportions of food sources that were ingested and the 

proportions that were assimilated by fishes (Figure 4). The 

forward selection procedure of the first RDA retained four 

variables (ingestions of calcified macroalgae, fleshy 

macroalgae, turf and invertebrates) to explain the assimila-

tions of food sources by fish. The overall ordination was 

significant (p < 0.001). The first axis explained 75.7% of 

the total variance and was mostly related to the proportions 

of ingestion of invertebrates and fleshy macroalgae. This 

axis was positively correlated with Acanthurus coeruleus 

and negatively correlated with the other fish species 

(Figure 4). The second axis summarized 23.4% of the vari-

ance and was mostly related to variations in the ingestion 

of calcified macroalgae and algal turf. This second axis 

was positively correlated with A. chirurgus and negatively 

correlated with A. bahianus (Figure 4). While the ingestion 

of invertebrates and algal turf were correlated with the 

assimilation of these two food items, no correlations were 

found between the ingestion and the assimilation for calci-

fied and fleshy macroalgae.  

Figure 4. Redundancy analysis (RDA) ordination diagrams 
on the effect of the ingestion of food items (variables pre-
ceded by “I”) on the assimilation of food items (variables 
preceded by “A”) by the fish. Invert: invertebrates; Fleshy: 
fleshy macroalgae; Calcified: Calcified macroalgae. 

DISCUSSION 

According to stomach contents and stable isotopes 

analyses, Acanthurus coeruleus, A. chirurgus, and A. ba-

hianus presented different trophic niches. Food categories 

were ingested in different proportions by the three species 

and mixing models showed different patterns of food as-

similation. Isotopic ratios reflected the assimilation of 

food sources on a long-term period (corresponding to the 

time of tissue renewal) and the three fish species exhibit-

ed different nitrogen signatures, showing a different use 

of the resources.  

The redundancy analysis (RDA) clearly distin-

guished the diet of the three fish species, including ali-

mentary patterns of ingestion and assimilation. A. co-

eruleus was characterized by a higher ingestion of fleshy 

macroalgae and turf than the other species. This species 

was also characterized by an ingestion of benthic inverte-

brates (principally small crustaceans) that was not record-

ed in A. bahianus and A. chirurgus. According to the mix-

ing models, turf was the most assimilated source by A. 

coeruleus. Kopp et al. (2010) demonstrated a link be-

tween the number of “bites” of A. coeruleus and an algal 

facies dominated by turf. Fleshy macroalgae and detritus 

were the second most assimilated sources whereas inver-

tebrates only complemented the diet with the lower pro-

portion of assimilation. Acanthurus chirurgus ingested a 

large amount of calcified macroalgae, even if the fish did 

not assimilate this source proportionally. The mixing 

models indicated a principal assimilation of fleshy 

macroalgae, and secondary assimilations of turf and detri-

tus with similar proportions. A. bahianus presented the 

particularity to ingest more sediment than A. coeruleus 

and A. chirurgus. A. bahianus ingested less calcified al-

gae and more fleshy algae than A. chirurgus that was re-

flected in the different assimilations given by the mixing 

model. Burkepile and Hay (2008) also show a significant 

effect of A. bahianus on upright macroalgae, including 

Dictyota spp. However, due to the deterrent molecules 

synthetized by the brown macroalgae (Hay and Fennical 

1988, Wallim et al. 2005), the consumption and assimila-

tion of macroalgae by surgeonfishes is mostly associated 

with the species Acanthophora spicifera rather than Dic-

tyota spp (Reinthal and Macintyre 1994).  

While Randall (1967) find an important and similar 

amount of algal matter, including macroalgae and algal 

turf, in the stomach contents of the three acanthurids 

(respectively 92.8%, 93.9% and 91.8%), some authors 

report a difference of diet that is mostly explained by the 
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different digestive tract anatomies of these species 

(Ferreira and Goncalves 2006, Tilghman et al. 2001). A. 

coeruleus has a thin-walled stomach while A. bahianus and 

A. chirurgus have thick-walled, gizzard-like stomach, 

which allow them to ingest most sediment and calcified 

algae. Actually, in this study, the food categories used by 

fish were similar for the three species (macroalgae, algal 

turf and detritus) but each category was ingested and as-

similated in different proportions.  

In this study, we failed to correlate ingestion and as-

similation of some food items. For example, A. chirurgus 

ingested a large amount of calcified macroalgae, which 

were not assimilated by the fish probably due to their low 

nutritional quality (Montgomery and Gerking 1980). This 

observation can be explained by three main reasons. First-

ly, ingested items are not necessarily assimilated by an 

organism (Hobson and Clark 1992) and some items are 

incidentally ingested while they do not represent a nutri-

tional interest for fish. Secondly, stomach contents repre-

sent only a snapshot of the diet and give uncertain infor-

mation in this study due to the high proportion of unidenti-

fied organic material. Finally, the method used to evaluate 

the ingestion of resources was based on visual observations 

of the stomach content with a stereomicroscope. Thus, cal-

careous sediment could have been identified as calcified 

algae, leading to an over-estimation of the proportion of 

calcified algae ingested by A. chirurgus.  

In conclusion, the three species of Caribbean surgeon-

fishes presented different trophic niches. This observation 

has been reported before and linked to the different diges-

tive anatomies of these species (Ferreira and Goncalves 

2006, Tilghman et al. 2001). The difference of trophic 

niche between the three species of surgeonfishes could 

explain the presence of the three acanthurids fishes in multi

-species foraging associations and the different use of re-

source could justify their coexistence in avoiding competi-

tive interactions for food resources. Moreover, the differ-

ence of trophic niche suggests a functional diversity among 

the Acanthuridae, demonstrated in the Pacific region by 

Choat et al. (2002), even if only three species are found in 

the Caribbean. This information is particularly important in 

fisheries management because the functional diversity re-

flects a complementarity of the three species in terms of 

impact on benthic communities. Thus, a decrease of one of 

the three species could have important consequences on the 

control of the algal communities of the Caribbean coral 

reefs. 
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