Molecular Divergence of Holopelagic *Sargassum* Species Using Extensive Field Samples from the Tropical and Subtropical Atlantic

Divergencia Molecular de las Especies Holopelágicas de *Sargassum* Mediante el Uso de Extensas Muestras del Atlántico Tropical y Subtropical

Divergence Moléculaire D'espèces Holopélagiques de *Sargassum* à L'aide de Vastes Échantillons de l'Atlantique Tropical dt Subtropical

KERRY WHITTAKER¹*, JEFF SCHELL¹, DEB GOODWIN¹, and AMY SIUDA² ¹Sea Education Association 171 Woods Hole Road, Falmouth, Massachusetts 02540 USA. *<u>kwhittaker@sea.edu</u> ²Eckerd College

4200 54th Ave S, St. Petersburg, Florida 33711 USA. siudaan@eckerd.edu

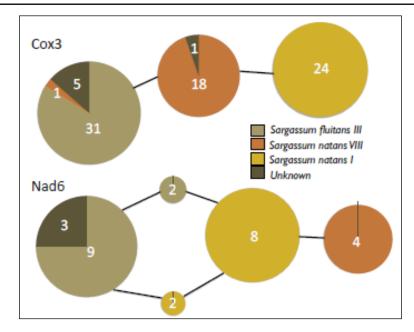
EXTENDED ABSTRACT

Introduction

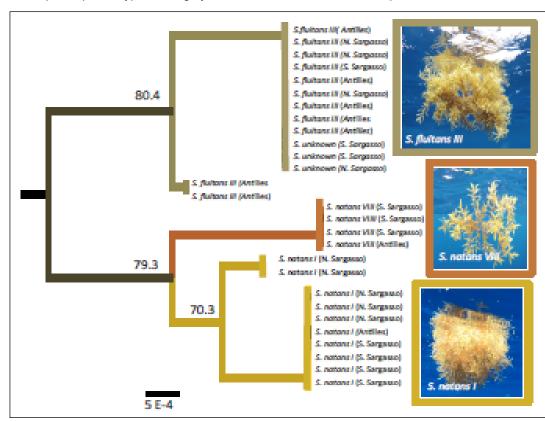
The genus *Sargassum* harbors the only holopelagic species of macroalgae in the world, *S. fluitans* and *S. natans*. Distributed throughout the Caribbean, Gulf of Mexico and North Atlantic, both species exhibit a wide range of morphological variation (Winge 1923, Parr 1939). Historically, common morphological variants of *Sargassum* included *S. fluitans III* and *S. natans I*, with greatest abundances in the Sargasso Sea and Gulf of Mexico. A third, previously-rare form, morphologically described as *S. natans VIII*, has recently inundated beaches in the tropical Atlantic and Caribbean, resulting in devastating ecological and economic impacts. These unprecedented accumulations reveal shifting patterns of *Sargassum* distribution, abundance and diversity in the Atlantic (Gower et al. 2013, Johnson et al. 2013, Schell et al. 2015). Molecular tools help resolve the genetic and evolutionary underpinnings of changes in *Sargassum* biodiversity while furthering nuanced identification of *Sargassum* morphological variants.

Sea Education Association has amassed decades of *Sargassum* observations and specimens on repeat cruise tracks in the North Atlantic and Caribbean. Here, we developed molecular tools to assess genetic divergence and differentiate among *Sargassum* forms collected at sea.

Methodology


Over 200 samples of *Sargassum* were collected from the Sargasso Sea, Caribbean, equatorial and tropical Atlantic between 2016 - 2018 aboard the *SSV Corwith Cramer* during Sea Education Association's SEA Semester voyages. All specimens used in this study were first classified using traditional morphological techniques. *S. fluitans III* has thorny stems, broad blades, oblong bladders, and no spine on the bladders. *S. natans I* exhibits smooth stems, spherical bladders, thin blades, and apical spines on the bladders. *S. natans VIII* is distinguished by smooth stems, spherical bladders, broad blades, and only rarely spines on the bladders. At first glace or without examination of the stems, *S. natans VIII* is easily misidentified as *S. fluitans III*, stressing the importance of developing molecular tools to complement morphological identification of *Sargassum* forms.

We examined genetic divergence in a subset of these field samples at two mitochondrial genes, Cox3 (n = 80) and Nad6 (n=28). Cox3 and Nad6 genes were chosen because they are highly conserved and thus reliable as phylogenetic markers. Primers were designed to amplify the Cox3 and Nad6 genes using published *Sargassum* mitochondrial genomes (Amaral-Zettler et al. 2017). Nad6 and Cox3 demonstrated the potential to resolve *Sargassum* forms, but had not been previously applied in this manner. We extracted DNA from *Sargassum* specimens, amplified the selected genes using newly designed primers, and sequenced gene products using Sanger sequencing.


Results and Implications

Both Cox3 and Nad6 mitochondrial genes successfully differentiated among the three common forms of *Sargassum* using specimens collected at sea over wide geographic space and time. *S. natans VIII* exhibited 0.349% divergence from *S. natans I* (one base pair difference at both genes) and 0.698% divergence from *S. fluitans III* (one base pair difference at Cox3 and three base pair differences at Nad6), calculated using concatenated Cox3 and Nad6 sequences (Figure 1, Figure 2). Long-established as unique species, *S. natans I* and *S. fluitans III* themselves differ by just 0.698% (two base pair differences at both genes). While sequence variability within Cox3 and Nad6 mitochondrial genes is generally low, *S. natans VIII* samples exhibited unique genetic sequences that differed consistently from *S. fluitans III* and *S. natans I*, suggesting the potential need for phylogenetic reclassification.

In this study, Nad6 and Cox3 further demonstrated their ability to resolve identification of morphologically rare or ambiguous *Sargassum* samples. For example, when those specimens classified as "unknown" during initial at-sea examination (due to blade, bladder or stem damage or ambiguities) were analyzed genetically, they grouped within the genetic

Figure 1. Haploytpe networks of Nad6 and Cox3 sequences. Circles correspond to unique haplotypes, or genetic sequence types. Color indicates *Sargassum* form and circle size is proportionate to the number of individuals sharing each haplotype. White numbers represent individuals from each *Sargassum* type sharing each haplotype. Lines represent single nucleotide differences. Nad6 and Cox3 genes reveal unique genetic sequences that distinguish among *Sargassum* forms. *S. natans VIII* represents a unique sequence type differing by one to three bases from other *Sargassum* forms at Nad6 and Cox3 genes. *S.*

Figure 2. A neighbor--joining--inferred phylogeny of concatenated Cox3 and Nad6 sequences from field samples of *Sargassum* collected between 2016 and 2018. Scale bar represents evolutionary distance, and numbers at the nodes represent boot-strap confidence values. *S. natans VIII* exhibits 0.349% divergence from *S. natans I*, and 0.698% divergence from *S. /luitans III*.

haplotypes of regionally-common Sargassum forms.

Future application of these genes may improve understanding of root evolutionary mechanisms behind shifting *Sargassum* dynamics. In particular, the recurrence of economically- and ecologically-damaging *Sargassum* inundation events across the Caribbean and tropical Atlantic demands greater knowledge of the distribution, evolution and origins of *Sargassum* diversity. We seek to use Cox3 and Nad6 genes, as well as others, to differentiate among rare and difficult to identify morphological variants within SEA's extensive archive to further resolve *Sargassum* phylogeography while concurrently developing higher -resolution molecular tools to target population-level divergence and more recent evolutionary history.

KEYWORDS: *Sargassum*, molecular divergence, mitochondrial genes

LITERATURE CITED

- Amaral-Zettler, L.A., N.B. Dragone, J. Schell, B. Slikas, L.G. Murphy, C.E. Morrall, and E.R. Zettler. 2017. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of *Sargassum* contributing to recent "Golden Tides" in the Western Atlantic. *Ecology and Evolution* 7(2):516 - 525.
- Gower, J., E. Young, and S. King. 2013. Satellite images suggest a new Sargassum source region in 2011. Remote Sensing Letters 4:764 -773.
- Johnson, D., D. Ko, J. Franks, P. Moreno, and G. Sanchez-Rubio. 2013. The Sargassum invasion of the eastern Caribbean and dynamics of the equatorial North Atlantic. Proceedings of the Gulf and Caribbean Fisheries Institute 65:102 - 103.
- Parr, A.E. 1939. Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection 6:52. Yale University Press, New Haven, Connecticut USA.
- Schell, J.M., D.S. Goodwin, and A.N.S. Siuda 2015. Recent Sargassum inundation events in the Caribbean: Shipboard observations reveal dominance of a previously rare form. Oceanography 28:8 - 10.
- Winge, O. 1923. The Sargasso Sea, its boundaries and vegetation. Report on the Danish Oceanographical Expeditions 1908-10 to the Mediterranean and Adjacent Seas. Carlsberg Physiological Laboratory, Copenhagen, Denmark. 33 pp..