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MARINE FISHERIES IN PERIL

A recent, but major, revelation in our quest to under-
stand nature is that humans dominate the world’s ecosys-
tems (Vitousek et al. 1997a). Through a variety of
mechanisms, including habitat alteration, exploitation,
exotic species introductions, and atmospheric emissions,
humans have negatively influenced population, com-
munity, and ecosystem dynamics (Vitousek 1994,
Williamson 1996, Botsford et al. 1997, Vitousek et al.
1997a-c, Jackson 2001), making it difficult for the world’s
flora and fauna to persist (Langston 1998). The extent of
this human domination is clearly illustrated by changes
in the world’s fisheries resources. Quite simply, many
historically important commercial and recreational fish-
eries are in a state of peril (Murray et al. 1999). In fact,
commercial fishing has caused nearly a quarter (22%) of
the world’s pelagic marine stocks to become overex-
ploited and brought an additional 44% of them to the
brink of overexploitation (Botsford et al. 1997). In addi-
tion, long-term historical data suggest that these nega-
tive impacts have been long-standing (Jackson et al.
2001). The situation is no less dire on coral reefs. Roughly
58% of the world’s coral reefs are considered at risk,
owing, in part, to destructive fishing practices and
overexploitation (Bryant et al. 1998).

Sadly, the continued decline of many marine fisher-
ies, both pelagic and coastal (e.g., associated with coral
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ABSTRACT Enthusiasm for the use of no-take marine protected areas (MPAs) as management tools for the
protection and enhancement of coral reef fishes is widespread. However, evidence that such marine reserves
actually enhance fishery yields is limited, primarily because of difficulties in quantifying the exchange of
individuals—especially larvae—between local populations within and outside the protected area. Knowledge of
the extent and spatial scale of this connectivity is of vital importance for the effective design and implementation
of marine reserves intended as fishery management tools. We review our current understanding of connectivity
among coral reef populations, including the role of important determining factors such as pelagic larval duration,
larval behavior, and hydrodynamics. We also discuss artificial and natural tagging methods that potentially can
be used to track movements of larvae between marine reserves and surrounding waters. To illustrate the application
of such methods, we discuss ECONAR (Ecological CONnections Among Reefs), a new, regional-scale research
project designed to measure the extent of connectivity among populations of coral reef fishes in the Mesoamerican
Barrier Reef System.

reefs), cannot be attributed to turning a “blind eye” to the
problem. On the whole, resource management agencies
have recognized that fisheries around the world are in
trouble, and have responded with seemingly appropriate
management plans implemented to remedy the situation.
These attempts at management, however, have been
largely unsuccessful, especially for reef systems (Plan
Development Team 1990, Roberts and Polunin 1991,
Bohnsack and Ault 1996, Roberts 1997b, Guénette et al.
1998, Russ 2002, Sale 2002). Reasons for the continued
decline of reef fisheries around the world are numerous
and include: 1) a reliance on inappropriate, traditional
management approaches that pretend fishers exploit
single targets, while having no impacts on the ecosystem
that sustains those species, 2) a lack of ecological infor-
mation pertinent to understanding species life histories,
as well as reef fish population and community dynamics,
3) an inability to understand, predict, and therefore
regulate human behavior, 4) a failure to integrate the
diversity of skilled personnel (i.e., ecologists, physical
oceanographers, and resource managers) necessary for
the development of appropriate management plans, and
5) insufficient funds to collect monitoring data or to
enforce imposed fishery regulations (Plan Development
Team 1990, Roberts and Polunin 1991, Bohnsack and
Ault 1996, Roberts 1997b, Guénette et al. 1998, Russ
2002, Sale 2002).
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Owing to the failure of traditional fisheries manage-
ment approaches, a growing interest in use of spatially
explicit management techniques has developed during
the past two decades (Guénette et al. 1998, Murray et al.
1999, Sale 2002). In particular, the use of marine reserves
as fishery management tools has been widely advocated
and frequently implemented (Plan Development Team
1990, Roberts and Polunin 1991, Bohnsack and Ault
1996, Russ 2002). Although the concept of marine re-
serves as a management option is not new, first explored
by Beverton and Holt during the 1950s (see Guénette et
al. 1998), their establishment definitely is a contempo-
rary phenomenon, demonstrating exponential growth
since the early 1900s (World Conservation Monitoring
Center Protected Areas Database; http:/ /www.
wcmc.org.uk/protected_areas/data/un_eanalysis.htm).
By 1997, close to 600 marine-related protected areas >
1,000 ha in size had been established worldwide, of
which, more than 400 included coral reefs (Bryant et al.
1998). Further, when considering all MPAs, even those
of postage stamp size, as well as those unmanaged “paper
parks” that are of dubious value, their numbers likely
range into the 1000s (Sobel 1993).

MARINE RESERVES AS FISHERY MANAGEMENT

TOOLS

Marine refuges are seductive tools that seem to
promise much. The potential benefits of marine reserves
are diverse (Plan Development Team 1990, Bohnsack
and Ault 1996, Murray et al. 1999), ranging from the
protection of biodiversity and ecosystem function, and
the enhancement of fish populations (e.g., improved
abundance, age structure, fecundity, and/or intraspecific
genetic diversity), to the fulfillment of more human-
oriented goals (e.g., “minimally disturbed” areas for
research and education, simplified enforcement areas for
fisheries management, areas for “non-consumptive” eco-
nomic uses). Of relevance to this paper, is the claim that
marine reserves can enhance fisheries via protection of
spawners and spawning habitat from the direct and indi-
rect effects of exploitation (Plan Development Team
1990, Roberts and Polunin 1991, Murray et al. 1999).

Protecting fish within the boundaries of a marine
reserve does not directly enhance yields. There are two
hypothesized ways in which an MPA can augment ex-
ploitable yields outside its boundaries, both of which
stem from the accumulation of fish biomass within the
no-take (or reduced-take) zone (Plan Development Team
1990, Roberts and Polunin 1991, Murray et al. 1999).
The first is through ‘spillover’, or the net outward migra-

tion of fish, which originally recruited to (or spent their
early life within) the marine reserve. Conceivably, this
spillover effect should occur as a result of heightened
competition for resources (e.g., food, habitat) within the
reserve, stemming from increased survivorship. The sec-
ond, and presumably more important form of fishery
augmentation is termed ‘subsidy’. With enhancement of
both size and age structure, population fecundity within
the marine reserve should increase, given the strong,
positive (typically exponential) relationship between
size/age and fecundity (Plan Development Team 1990,
Carr and Reed 1993). In turn, if pelagic larvae are dispers-
ing or being advected out of the reserve (i.e., into the
region still open to fishing), heightened gamete produc-
tion within the reserve should result in an increased
supply (or subsidy) of these larvae to fished populations.

Although marine reserves can effectively enhance
species richness within their borders (see Crowder et al.
2000 for a review), there is surprisingly little evidence
showing they enhance fisheries (Roberts and Polunin
1991, Carr and Reed 1993, Dugan and Davis 1993,
Crowder et al. 2000, Russ 2002). Much evidence has
accrued demonstrating that fish within the borders of
marine reserves achieve higher abundances, grow to
larger sizes, and reach older ages than fish still subject to
the fishery (see Plan Development Team 1990, Roberts
and Polunin 1991, Carr and Reed 1993, Dugan and Davis
1993, Crowder et al. 2000, and Russ 2002 for reviews).
Some evidence also exists, which demonstrates that
spillover can enhance yields from regions immediately
adjacent (#1 km) to marine reserve borders (Alcala and
Russ 1990, Russ and Alcala 1996, Crowder et al. 2000,
McClanahan and Mangi 2000). No investigation, how-
ever, has actually quantified the numbers of juveniles
and adults that leave marine reserves, and we are still
uncertain as to whether the amount of spillover compen-
sates for the removal of the reserve from the available
fishing ground (Roberts and Polunin 1991, Dugan and
Davis 1993, Crowder et al. 2000, Russ 2002). Roberts et
al. (2001) present data they claim as clear evidence that
marine reserves do enhance adjacent fisheries. They
document, for the Soufrière Marine Management Area,
significant increases in biomass of five fishery families
both inside and outside the reserve (3-fold, and 2-fold
respectively in the three years following implementa-
tion), as well as significant increases, in the immediate
vicinity of the reserve, in total trap fishery catch (46%
increase for large traps and 90% increase for small traps)
and CPUE (36% for large and 80% for small traps).
However, these seemingly impressive data, suggesting
very substantial spillover effects, include no controls for
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natural variation in recruitment, biomass or yield, and
provide no evidence that spillover has caused the im-
provements seen outside the reserve borders.

Even more troubling is the fact that the subsidy
effect remains completely untested. Subsidy is expected
to be a far more substantial effect of a marine reserve than
is spillover (Watson et al. 1997) because larvae will
travel further outside of reserve boundaries than juvenile
and adult fishes with home ranges that typically are less
than 1 km in diameter (Sale 1980, Roberts and Polunin
1991, McClanahan and Mangi 2000). Unfortunately, we
know of no empirical study of a marine reserve that has
even demonstrated a subsidy exists, let alone quantified
its extent.

If we are to continue to promote marine reserves as an
effective fisheries management tool, we must demon-
strate that they enhance fish yield in surrounding waters
by an amount that is greater than the yield now excluded
from the fishery by the establishment of the reserve.
Otherwise, the implementation of marine reserves is
simply a way of forcing a reduction in effort while
pretending to do something more. We, therefore, ur-
gently need to document the extent of subsidy and
spillover.

Recognizing that our understanding of subsidy, and
hence connectivity among reef fish populations, is lim-
ited primarily by our limited knowledge of larval dis-
persal (Doherty and Williams 1988, Leis and McCormick
2002, Sale 2002), our goals for this paper are to consider
the various processes that influence larval dispersal, to
review the techniques that may elucidate the extent of
the resulting connectivity, and to introduce one current
research project representing the type of regional-scale,
multidisciplinary approach that is going to be necessary,
if definitive estimates of connectivity are to be obtained.
The goal of quantifying connectivity must be recog-
nized as of primary importance both for improved funda-
mental understanding and for more effective management
using marine reserves as fishery management tools.

IMPORTANCE OF LARVAL DISPERSAL

Most coral reef fishes follow an indirect model of
development (Balon 1990), wherein there is a prominent
larval stage followed by settlement on a reef and meta-
morphosis into the juvenile stage. Because larvae of
many reef fishes are pelagic, for a period ranging from
days to months (Brothers et al. 1983, Wellington and
Victor 1989, Carr and Reed 1993), long-distance dis-
persal of larvae has been viewed as likely, thereby caus-
ing reef fish populations to be viewed as open

metapopulations (Sale 1980, Carr and Reed 1993, Caley
et al. 1996, Roberts 1997a). In addition, because pelagic
larvae are typically small in size, and thus likely at the
mercy of their physical environment, knowledge of large-
scale hydrodynamic processes (e.g., mean current pat-
terns) and pelagic larval duration (PLD) seemed primarily
what was necessary to make predictions about larval
dispersal, and hence connectivity among reefs (Williams
et al. 1984, Hourigan and Reese 1987, Roberts 1997a).
While the importance of connectivity for understanding
the demography of marine populations has been broadly
acknowledged (e.g., Carr and Reed 1993, Ogden 1997,
Roberts 1997a, Warner et al. 2000, Crowder et al. 2000),
the difficulty of measuring it—and possibly the force of
other agendas—has meant that those responsible for
establishing marine reserves have done so primarily
without reference to objective estimates of connectivity.

Recently, our scientific view of coral reef systems
has begun to change. The emphasis on long-distance
dispersal of larvae has been replaced by arguments for the
importance of retention (i.e., self-recruitment; Shultz
and Cowen 1994, Jones et al. 1999, Swearer et al. 1999,
Cowen et al. 2000, Leis and McCormick 2002). Four
lines of evidence can explain this paradigm shift (also see
Leis and McCormick 2002).

1. As we are only now beginning to appreciate, reef
fish larvae are strong, competent swimmers with highly
developed sensory systems (Stobutzki and Bellwood
1994, 1997, Stobutzki 1998, Leis and Carson-Ewart
2001, Leis and McCormick 2002), enabling them to
actively choose the direction in which they move (Leis
and Carson-Ewart 1998, 2001, Leis and McCormick
2002). While hydrodynamic processes will dictate the
direction of movement of newly hatched larvae, labora-
tory and in situ investigations have shown that larvae can
swim in a directed manner and orient themselves toward
reefs that are not in the direction of currents (Leis and
Carson-Ewart 1998, 2000, Leis and McCormick 2002).
In addition, several field-validated biophysical models
of larval movement among reefs have demonstrated that
information on both hydrodynamic features and larval
behavior is necessary to understand larval distribution
patterns (Wolanski et al. 1997, Cowen et al. 2000).

2. It is now recognized that small- and meso-scale
hydrodynamic processes, which dominate in the imme-
diate vicinity of the reef complex, might be more impor-
tant than large-scale processes in influencing larval
dispersal (see Cowen 2002 for a review). Interestingly,
many of these smaller-scale processes tend to promote
retention rather than dispersal from a reef, as suggested
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by both empirical and numerical modeling studies (Shultz
and Cowen 1994, Black et al. 1991, Cowen 2002).

3. The small, but growing, number of spatial stud-
ies of reef fish genetics indicates a large degree of genetic
heterogeneity among local populations (Bell et al. 1982,
Planes 1993, Planes et al. 1994). In fact, in a recent review
of studies on coral reef fish genetics, Planes (2002) found
significant genetic divergence among local populations
in 36 of the 38 species examined, suggesting that larval
(or even adult) dispersal rarely has operated to homog-
enize them.

4. The only two empirical field studies that have
attempted to quantify larval dispersal (i.e., Jones et al.
1999, Swearer et al. 1999) present evidence showing self-
recruitment can be equally as important as dispersal to
understanding coral reef fish population structure.

These findings have major implications for the use
of marine reserves as fishery management tools. If reten-
tion is important, we cannot set up marine reserves
assuming that larvae will be broadly dispersed, accord-
ing to simple rules that combine PLD and mean ocean
currents. Patterns of dispersal of larvae may be strongly
dependent on local details of hydrography and geogra-
phy, in combination with details of larval behavior. In
turn, dispersal may be constrained to regional or local
scales, and therefore, several small reserves scattered
throughout a region may be more effective than a single
larger one (Leis and McCormick 2002). Clearly, there is
an urgent need to build our understanding of connectiv-
ity so that it can be used as a tool to design useful marine
reserve networks.

INNOVATIVE TECHNIQUES TO QUANTIFY DISPERSAL

AND CONNECTIVITY

Multiple factors, including PLD, hydrodynamic fea-
tures, and larval behavior, can interact to regulate larval
dispersal. Because we are still in our infancy in under-
standing these interactions (Cowen 2002, Leis and
McCormick 2002), there is the risk that a comprehensive
understanding of connectivity may not be within our
grasp, at least for the foreseeable future. We need in-
creased effort on all fronts (larval biology, sensory capa-
bilities and behavior, detailed hydrodynamic studies),
and concerted efforts to integrate these approaches. Fur-
ther development of biophysical models will be essential
as tools for testing hypotheses (e.g., Cowen et al. 2000),
as well as to aid in this integration.

While a comprehensive understanding of connec-
tivity must be a long-term goal, we are fortunate that,
owing to recent technological advances, we can begin to

quantify connectivity without necessarily understand-
ing the suite of causal mechanisms. Below, we discuss a
traditional tagging approach for evaluating dispersal,
and afterwards, two innovative approaches that hold
more promise for quick estimates of extent of larval
exchange.

Tagging Studies
The clearest way to identify larval dispersal patterns

would be to track the movements of numerous individu-
als using some type of artificial tag (e.g., Passive Inte-
grated Transponders (PIT) tags, Floy tags, pop-up satellite
archival tags, radio-transmitters). Such approaches have
proven quite successful in identifying home ranges,
migration routes, and horizontal and vertical distribu-
tion patterns of juvenile and adult fishes in both freshwa-
ter and marine systems (e.g., Parker 1992, Zabel et al.
1998, Auer 1999, Anras et al. 1999, Smithson and Johnston
1999, Bolden 2000). Unfortunately, however, these tech-
nologies are not yet available in forms appropriate for
small-bodied organisms, such as fish eggs and larvae.
Even if they were, high mortality rates (>99%) and
dilution effects during pelagic stages might make their
use impractical.

As a potential alternative to these expensive (or
impractical) methods, artificial tagging techniques have
been developed, wherein otoliths—calcium-carbonate
concretions of the inner ear—are marked with fluores-
cent dyes, such as tetracycline or alizarin (see Table 1 in
Geffen 1992). To date, this technique has primarily been
used to quantify survival of hatchery-reared fish, as well
as to validate daily increment deposition on otoliths,
which then can be used to age fish (Geffen 1992, Yamashita
et al. 1994, Secor et al. 1995). However, in the only larval
fish tagging study attempted in a marine system, Jones et
al. (1999) used this technique (i.e., oxytetracycline mark-
ing of embryos in nests) to demonstrate that retention
(self-recruitment) of a damselfish, Pomacentrus
amboinensis, to reefs at Lizard Island (Great Barrier Reef)
might be equally, if not more, important than larval
immigration to the reefs.

Unfortunately, the utility of artificial tags is limited,
owing to high larval mortality, and hence low recapture
rates (e.g., only 15 of ~10 million marked individuals
were recaptured by Jones et al. (1999)). This can reduce
confidence in estimates of self-recruitment (range in
Jones et al. (1999) was 15% to 60%). In addition, this
technique seems only appropriate for nest-guarding spe-
cies with benthic eggs or larvae (e.g., Blenniidae,
Gobiidae, Pomacentridae, Apogonidae), not broadcast
spawners found in the families Serranidae, Lutjanidae,
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Haemulidae, Labridae, and Acanthuridae. Clearly, mak-
ing use of a natural tag, which would eliminate any need
to mark fish, seems an ideal way to quantify connectivity
for any species of fish.

Genetics
Quantifying genetic relatedness among fish both

within and among reefs offers one such approach. If some
sort of open (metapopulational) structure exists and
larval exchange occurs among reefs, then we would
expect populations to be homogeneous relative to reefs
that do not exchange individuals. Although several
empirical investigations have demonstrated that larval
exchange among reefs can occur (e.g., Swearer et al.
1999), 95% (n = 36 of 38) of the studies that have
examined genetic structure among local reef fish popu-
lations found significant genetic heterogeneity among
them (Planes 2002), indicating that dispersal was low
enough that panmixis had not occurred (or possibly that
differential selection was occurring).

Despite the benefit of not needing to mark fish, the
use of genetics as a tool to quantify connectivity has its
drawbacks. First, choosing an appropriate technique is
not a straightforward endeavor, owing to tradeoffs among
cost, ease of use, and the potential to discriminate among
populations. For example, most genetic studies of coral
reef fishes have explored differences among local popu-
lations using protein electrophoresis (i.e., variation in
allozymes; Planes 2002). Although a fairly straightfor-
ward, quick, and inexpensive technique, protein electro-
phoresis has two potential limitations. First, this method
presupposes that differences in allelic frequencies among
populations are due solely to gene flow (i.e., dispersal)
and random divergence associated with genetic drift.
This assumption, however, is not realistic because natu-
ral selection, as well as historical contact, can be influ-
ential (Planes 2002). Second, and more importantly,
whereas a result of genetic dissimilarity among local
populations is clear evidence of a lack of exchange of
individuals among them, a result of genetic homogene-
ity might not be real. Because not all DNA codes for
proteins, protein electrophoresis can underestimate ge-
netic variation among populations, resulting in apparent
homogeneity (Planes 2002).

Alternatively, one may choose to use restriction
fragment length polymorphisms, random amplified poly-
morphic DNA, minisatellites and microsatellites, or DNA
sequences to explore genetic differences among local
populations.  Although Planes (2002) views
microsatellites as “the future tool for population genet-
ics” because microsatellite systems are highly variable

and are not under the influence of selection, this tech-
nique is expensive, time-consuming, and plagued with
problems with regard to analysis and interpretation
(Planes 2002). See Parker et al. (1998) and Planes (2002)
for a more detailed discussion of the advantages and
disadvantages of these genetic techniques.

The second major drawback with using genetics to
explore connectivity is that the information required to
properly design marine reserve networks might not be
provided. Indeed, genetics has the potential to determine
whether two (or more) populations are mixing (homoge-
neity) or not (heterogeneity). However, an exploration of
genetic structure cannot quantify the magnitude (or rate)
of exchange of individuals between populations because
only a few exchanges can lead to genetic homogeneity
(Allendorf and Phelps 1981, Hartl and Clark 1997, Planes
2002). Thus, even if two populations were found to be
genetically similar (i.e., homogeneous), we still would
not be able to tell whether the lack of genetic divergence
was due to an exchange of 10 or 10,000 individuals per
year between them. And unfortunately, it is this informa-
tion (i.e., the rate and magnitude of mixing) that has been
the critical limiting element in models attempting to
determine how marine reserves will influence fish popu-
lation dynamics. As such, although genetics can be
useful for determining the extent of connectivity via
larval dispersal, it cannot be used as the only tool,
especially if populations appear homogeneous.

Otolith microchemistry
The developing ability to accurately measure trace

concentrations of elements in otoliths of fish offers
another potential way to explore connectivity that does
not require artificial tagging (Campana 1999, Thresher
1999, Swearer et al. 1999, Thorrold et al. 2001, Thorrold
and Hare 2002). This technique, however, has an advan-
tage over genetics in that it allows the magnitude (or rate)
of exchange between local populations to be quantified.

Because otoliths are metabolically inert, and there-
fore do not undergo chemical resorption (unlike other
calcified structures in fish), and because they grow incre-
mentally throughout the life of the fish, their microchem-
istry serves as a permanent record of the environment
experienced by fish (Campana 1999, Thresher 1999).
Thus, the progeny of disparate local populations should
have differential incorporation of elements (e.g., stron-
tium, barium, lead, manganese, magnesium) into otoliths,
assuming that water chemistries vary among locations. In
turn, by collecting a sample of newly settled recruits to
a reef and comparing the chemistry of the otolith core
(which should be related to water chemistry at the natal
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site) to the chemistry of post-settlement growth rings
(which should be related to water chemistry at the resi-
dent reef), one should be able to 1) determine the propor-
tion of settlers (or even spawners) that were produced
locally versus those that arrived from elsewhere (sensu
Gillanders and Kingsford 1996, Swearer et al. 1999), and
2) identify from where the immigrants to a particular reef
were produced (sensu Gillanders and Kingsford 2000,
Thorrold et al. 2001), assuming that microchemical “sig-
natures” from other production areas are known. Such
information would be of obvious value for marine reserve
network design.

This technique has mainly been used to identify
migration routes and spatial (stock) structure of freshwa-
ter, anadromous/catadromous, and marine fishes
(Campana et al. 1999, Limburg 1995, Begg et al. 1998,
Thorrold et al. 1998; see Campana 1999, Thresher 1999,
and Thorrold and Hare 2002 for reviews). However, it also
has been used to quantify the degree of connectivity
among local populations of weakfish (Cynoscion regalis)
by quantifying the degree of philopatry (natal homing)
to estuaries located along the Atlantic coast (Thorrold et
al. 2001). In addition, Swearer et al. (1999) used otolith
microchemistry to determine whether larval dispersal or
retention (i.e., self-recruitment) was more important to
understanding recruitment patterns to coral reefs sur-
rounding St. Croix, U.S. Virgin Islands. Although Swearer
et al. (1999) found both to be important, depending on
whether recruitment was occurring to the windward or
leeward side of the island, no attempt was made to
identify the natal origin of the immigrating larvae. Thus,
despite its promise, this technique has not yet been used
to quantify connectivity among populations from two or
more reefs.

PRESCRIPTION FOR QUANTIFYING CONNECTIVITY:
ECONAR AS AN EXAMPLE

Despite widespread recognition that quantifying
larval dispersal, and hence connectivity, is vital for
proper design of marine reserve networks, no study has
yet attempted to quantify connectivity between two or
more reefs. Likely, this is so because of complexities
involved with such an undertaking. Clearly, effective
research projects aimed at quantifying connectivity will
require collaboration among scientists from numerous
disciplines, including hydrologists, geneticists, ecolo-
gists, and geochemists. In addition, because larval dis-
persal might be extensive, and therefore, will not adhere
to jurisdictional boundaries, the most informative col-
laborations seemingly will need to conduct field work on

a regional scale and involve scientists (and resource
managers) from one or more countries. Certainly, this
will further the need for long-term planning and coordi-
nation.

We are currently undertaking a research project
called ECONAR, for Ecological CONnections Among
Reefs, which is focused on identifying the extent of
connectivity among reef fish populations residing along
the Meso-American Barrier Reef System (MBRS) off the
coast of Central America. Our project’s objectives are as
follows. First, at reef sites in both Belize and Mexico, we
seek to characterize spatio-temporal patterns of recruit-
ment (settlement), which are a consequence of larval
dispersal and the distribution of natal sites (i.e., sources
of larvae). Second, we seek to build detailed analytical
models of water flow (in the upper 100 m) in the region.
Because small-scale hydrodynamic features (e.g., con-
vection eddies) can be as important to understanding
larval dispersal (or lack thereof) as large-scale processes
(e.g., long-shore currents), we are nesting fine-scale
models of water flow for each of our primary field sites
(i.e., Turneffe Islands, Belize and Banco Chinchorro,
Mexico) within a coarse-scale, regional model. This
modeling effort will be built from remotely sensed data
of sea surface characteristics, as well as archived data of
topography and habitat types. Third, we will use empiri-
cal collections of newly settled fish to 1) identify char-
acteristics of the pelagic larval phase (e.g., PLD, growth
rates), and 2) determine whether those settlers were pro-
duced locally or elsewhere. Information on PLD will be
obtained from otoliths, and will be combined with hydro-
dynamic models to determine the potential range of
dispersal distances that fish might have endured. To
identify natal origins of new settlers, we will use informa-
tion obtained from otolith microchemistry (using solu-
tion-based and laser-based inductively coupled
plasma-mass spectrometer),  genetics (using
microsatellites), and growth rate analyses (sensu Swearer
et al. 1999). Importantly, conducting all of these analy-
ses on the same individuals collected from sites among
geographically separated reefs will allow us to determine
the performance of each technique relative to the others.
We are confident that this three-pronged approach to
evaluate specimens, coupled with the monitoring of
settlement patterns, will allow us to discriminate larvae
from different source areas. In addition, a comparison of
these results to transport vectors derived from our hydro-
dynamic models will provide evidence on the impor-
tance of passive dispersal to inter-reef connectivity.

While we know that ECONAR will make only a
modest contribution to understanding questions relat-
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ing to connectivity, it has three attributes that could
make it a model for future projects.

ECONAR is multi-disciplinary
Seven principal investigators are involved in the

project, including two reef fish ecologists, two fish ge-
neticists, one geochemist, and two physical oceanogra-
phers. In addition to several graduate students, two
post-docs are involved, one to assist with ecological
aspects of the project and the other with building the
hydrodynamic models. With this diversity of expertise,
we will be able to blend contemporaneous ecological
data with detailed physical models to test questions
relating to connectivity.

ECONAR is regional in scope
Our field sites are a set of seven locations around the

rim of Turneffe Atoll, Belize, and a set of six locations
around the rim of Banco Chinchorro, Mexico. In Belize,
we are working in conjunction with the University of
Belize Institute for Marine Studies at their Calabash
Caye facility. In Mexico, we are collaborating with Dr. J.
Ernesto Arias, CINVESTAV-IPN, as well as with the
managers of the Banco Chinchorro Biosphere Reserve.
Furthermore, ECONAR has been specifically designed to
interface with a much larger, international development
project funded by the World Bank that is dedicated to
improving the sustainability of environmental manage-
ment in the region of the MBRS, stretching from the
southern Yucatan of Mexico, through Belize and Guate-
mala to the Bay Islands of Honduras. ECONAR will
directly contribute to some aspects of the environmental
monitoring component of the World Bank project, while
we, in turn, benefit from some of its monitoring efforts.

ECONAR is a multi-scale investigation
Past research has demonstrated that processes that

influence recruitment, and hence population, dynamics
can vary both spatially and temporally (Caley et al. 1996,
Caselle and Warner 1996, Sponaugle and Cowen 1997,
Swearer et al. 1999, Cowen 2002). As such, we have
designed our project to test mechanisms of connectivity
at multiple spatial and temporal scales. For example,
with the aid of our collaborators, we will be able to
explore questions of connectivity at both the regional
(Chinchorro versus Turneffe) and local (sites within each
atoll) scales. Similarly, by sampling at both long (an-
nual) and short (daily to weekly to monthly) time scales,
we also will be able to explore inter-annual variation in
larval dispersal.

SUMMARY AND CONCLUSIONS

While the movement by resource managers to supple-
ment, or even abandon, traditional forms of fisheries
management, in favor of the creation of marine reserves
has produced important benefits both ecologically and
socially, not all proposed benefits of such reserves have
been realized. Most notably, we still do not know whether
marine reserves can fulfill their role as fisheries enhance-
ment devices because 1) no study has quantified whether
the spillover from such reserves offsets losses to the
fishery caused by the establishment of no-take areas, and
2) no study, as of yet, has demonstrated that a measurable
subsidy through larval dispersal from the reserve even
occurs. This latter uncertainty is especially disturbing
because fisheries enhancement in the form of larval
subsidy is theorized as being more important than
spillover.

The primary reason for this lack of understanding has
been the difficulty with tracking larval dispersal, and
hence connectivity, among reefs inside and outside of
marine reserves. Owing to new technological advances,
however, that allow individual larvae to be tracked via
artificial (e.g., fluorescent marking of otoliths) and natu-
ral (e.g., genetics, otolith microchemistry) tags, our abil-
ity to quantify connectivity in a fashion useful to marine
reserve network design should be quite rapid. This will
especially be so, if these technologies are incorporated
into multi-disciplinary, multi-scale projects that operate
at a regional scale (e.g., ECONAR).

Given that we now have the tools to begin to under-
stand connectivity, we must stop paying it lip service and
actually begin to quantify it. For, until we understand the
extent of connectivity among reefs, we will not be able
to design marine reserve networks that benefit fisheries.
Likewise, until we devise projects that use these innova-
tive techniques to explore the utility of current marine
reserve networks, we cannot say for certain that they
benefit the fisheries they are supposed to protect. This
last point is especially critical when considering that,
more likely than not, marine reserves have been “sold” as
fishery enhancement devices to developing countries
with weak economies that revolve around artisanal and
commercial fishing. Although we agree with Crowder et
al. (2000) that marine reserve networks should continue
to be established because of other potential benefits, we
do not feel that they should be promoted as fisheries
enhancement tools in the absence of evidence. By con-
tinuing to do so, we, as scientists and resource managers,
risk losing credibility that will be vital for future efforts
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to gain support necessary to properly implement net-
works that are based on sound information.
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